Energie (= die Fähigkeit, Arbeit zu leisten) existiert in verschiedenen Formen:
Sie kann als Bewegungsenergie, Wärme oder potentielle Energie (z.B. Energie eines Sprengstoffs) in Erscheinung treten. Alle Energieformen können weitgehend ineinander umgewandelt werden.
Oft wird jede Energieform in einer besonderen Einheit gemessen: die mechanische in Joule, die elektrische in Elektronenvolt, die Wärme in Kalorien usw. Im SI- System wird nur noch das Joule für alle Energieformen verwendet.
1 cal = 4.184 J
Jeder chemische Vorgang ist mit einem Energieumsatz verknüpft. Diese Tatsache zeigt, dass jedem Stoff ein bestimmter Energieinhalt zukommt, der sich aus verschiedenen Anteilen zusammensetzt:
1. Thermische Energie der Teilchen: Bewegungs-, Schwingungs- und Rotationsenergie
2. Energie der chemischen Bindung ( Gitterenergie, Bindungsenthalpie )
3. Energie, die auf zwischenmolekularen Kräften beruht
4. Energie, der an den Bindungen nicht beteiligten Elektronen
5. Energie der Atomkerne
Bei chemischen Reaktionen werden Bindungen getrennt und neu gebildet. Um eine Bindung zu trennen, ist stets Energie erforderlich; bei der Bildung einer Bindung wird stets Energie frei.
Die Energien der Atomkerne und der an den Bindungen nicht beteiligten Elektronen ändern sich bei chemischen Vorgängen kaum.
Da absolute Werte des Energieinhalts eines Stoffes nicht meßbar sind, definiert man willkürlich den Energieinhalt der Elemente in einem Standardzustand gleich Null. Als Standardzustand hat man ihren stabilsten Zustand bei 25°C ( 298 K ) und 1,013 bar gewählt.
Beispiele für wechselseitige Umwandlung von Energiearten:
·
Sonnenlicht bestrahlte Gegenstände aufgenommene Wärme
·
elektrischer Strom Lautsprecher Schall
Zur Messung von Reaktionsenergien führt man die Reaktion in einem Kalorimeter durch.
Aus der Masse und der Differenz der Wassertemperatur vor und nach dem Versuch läßt sich die freigesetzte bzw. aufgenommene Wärme berechnen. Die Messung selbst kann entweder unter konstantem Druck oder unter konstantem Volumen ausgeführt werden. Energien, die sich auf Messungen unter konstantem Druck beziehen, werden Enthalpien genannt; die Reaktionsenergie ( Reaktionswärme ) wird deshalb als Reaktionsenthalpie bezeichnet.
Bei Wärmemessungen unter konstantem Volumen wird die Änderung der inneren Energie U bestimmt.
Die angegebenen Reaktionsenthalpien werden stets auf eine Reaktionseinheit bezogen. Dabei werden von jedem Reaktionsteilnehmer so viele mol umgesetzt, wie der Reaktionsgleichung entsprechen.
Die Vorzeichengebung ( bei exothermen Reaktionen ist die Enthalpieänderung
H < 0, bei endothermen > 0 ) erfolgt vom Standpunkt der Stoffe aus, die bei exothermen Reaktionen Energie an die Umgebung abgeben, bei endothermen Reaktionen Energie von der Umgebung aufnehmen.
Die Kenntnis von Reaktionsenthalpien ist für die praktische Durchführung chemischer Reaktionen von großer Bedeutung. Ist z.B. bekannt, dass die Reaktionsenthalpie einer bestimmten Reaktion stark negativ ist, so muß beim Umsatz größerer Stoffmengen dafür gesorgt werden, daß die freiwerdende Wärme abgeleitet werden kann, um eine lokale Überhitzung, die zu einem unkontrollierbar schnellen Ablauf der Reaktion führen könnte, zu vermeiden.
Bildungsenthalpien sind notwendig, um Reaktionsenthalpien zu berechnen. Das funktioniert, indem man die Differenz bildet zwischen de Summe der Bildungsenthalpien der Endstoffe und der Summe der Bildungsenthalpien der Ausgangsstoffe.
Nach dem Gesetz der konstanten Wärmesummen ( Satz von Hess ) hängt die Reaktionsenthalpie eines bestimmten Vorgangs nicht vom Weg ab, sondern wird nur durch den Anfangs- und Endzustand des Systems bestimmt.
Photochemische Reaktionen
Bei solchen Vorgängen wird die Reaktionsenergie ganz oder teilweise als Lichtenergie frei ( ( z.B. bei Verbrennungen ) oder sie werden durch Licht ausgelöst oder überhaupt erst ermöglicht. Das Licht wirkt dann entweder als Aktivierungsenergie oder als die für eine endotherme Reaktion aufzuwendende Energie. In jedem Fall kann Lichtenergie nur dann wirksam sein, wenn sie durch die Teilchen eines Stoffs absorbiert werden kann. Sichtbares Licht wird nur von farbigen Stoffen absorbiert; nur ein System, das farbige Stoffe enthält, kann daher auf sichtbares Licht reagieren.
Beispiele photochemischer Reaktionen:
Ausbleichen von Farbstoffen am Licht, Photosynthese,.....
|