Aufbau:
Alle Tenside sind nach dem selben Prinzip aufgebaut, sie besitzen einen polaren und einen unpolaren Teil. Folglich sieht ein Tensid vereinfacht dargestellt so aus:
Abb. 7.1:
Der unpolare (hydrophobe) Teil steht für einen linearen, verzweigten oder ringförmigen Kohlenwasserstoffrest. Tenside werden aber im allgemeinen nach Art und Ladung des polaren (hydrophilen) "Kopfs" klassifiziert. Hierbei können vier Gruppen unterschieden werden: Aniontenside, Kationentenside,amphoterme und nichtionische Tenside (Niotenside).
Lösung von Tensiden in Wasser
Bei einer geringen Konzentration an Seifenanionen reichern sich diese zuerst an der Wasseroberfläche an, da dieser Zustand für sie energetisch am günstigsten ist - die hydrophilen Gruppen der Seifenanionen richten sich so aus, dass sie Kontakt mit dem Wasser haben, die hydrophoben hingegen so, dass sie aus dem Wasser herausragen und somit eine Wechselwirkung mit dem Wasser vermeiden. Bei zunehmender Konzentration wird diese Grenzfläche vollständig mit einer Schicht von Seifenanionen bedeckt (monomolekulare Seifenschicht). An der Wasseroberfläche befinden sich nun zwischen den Wassermolekülen die hydrophilen Teile der Seifenanionen. Dadurch wird die starke Anziehung zwischen den Wassermolekülen vermindert und es nimmt in Folge die Oberflächenspannung ab. Das Abnehmen der Oberflächenspannung hat auch das Abnehmen der Grenzflächenspannung z.B. zwischen Wasser und Öl zur Folge. Ursache für die Ausbildung von Grenzflächen zwischen zwei Flüssigkeiten ist die unterschiedlich großen Oberflächenspannungen. Je größer die Differenz ist, desto größer ist auch die Grenzflächenspannung. Ist die Oberflächenspannung jedoch gleich groß, verschwindet die Grenzfläche.
Wird nun weitere Seife gelöst, findet man Seifenanionen auch im Inneren der Lösung. Es entstehen sogenannte Micellen (das sind Teilchenverbände aus 50 bis 1000 Seifenanionen, die so angeordnet sind, dass die hydrophoben Teile der Seifenanionen ins Innere der Micelle zeigen), da der hydrophobe Teil versucht, sich der Wechselwirkung mit dem Wasser zu entziehen. Der hydrophile Teil der Seifenanionen ist jedoch immer den Wassermolekülen zugewandt.
Abb. 8.1:
Zwischen den Seifenanionen an der Oberfläche, den Seifenanionen der Micellen und einzelnen Seifenanionen in der Lösung besteht ein dynamisches Gleichgewicht, daher ständig gelangen Seifenanionen in die Micellen, treten aus Micellen aus, gelangen an die Oberfläche oder verlassen die monomolekulare Seifenschicht der Oberfläche.
Der Beginn der Micellbildung wird als kritische Micellbildungskonzentration bezeichnet und ist ein charakteristischer Zahlenwert für jedes Tensid.Da die Micellbildung genau bei der Stelle stattfindet bei der die Oberfläche mit Seifenanionen bedeckt ist, ändert eine weitere Seifenzugabe nichts an der Oberflächenspannung der Flüssigkeit. Waschwirkung und Schaumbildung treten erst auf, wenn die kritische Micellbildungskonzentration überschritten wurde.
Die waschaktive Wirkung von Tensiden (am Beispiel der anionischen Tenside)
Da Wasser eine hohe Oberflächenspannung hat, perlt es im Normalfall auf festen Oberflächen und kann daher die Fasern bzw. den Schmutz nicht vollständig benetzen. Eine Seifenlösung hingegen, kann auf Grund der niedrigeren Oberflächenspannung bis an die Faser- und Schmutzoberfläche vordringen. Dadurch können z.B. auch hydrophobe Textilien benetzt werden.
Abb. 8.2:
Wassertropfen auf einer Textiloberfläche
vor und nach Seifenzugabe
Die Seifenmoleküle lagern sich, bedingt durch die Grenzflächenaktivität, wie schon zuvor bei Luft und Wasser beschrieben, bevorzugt an der Grenzfläche zwischen Wasser und Textiloberfläche an. Sowohl Faser als auch Schmutz werden also von einer Seifenanionenschicht umgeben, wobei der hydrophile Teil wiederum in die wässrige Lösung ragt.
Abb. 9.1:
Anlagern der Tenside an der Oberfläche des Schmutzes und des Textils
Der Schmutz wird nun von der Oberfläche abgelöst. Dieser Vorgang wird dadurch unterstützt, dass sich die Tensidmoleküle auch an der Oberfläche des Textils angelagert haben. Die Tensidmoleküle sind negativ geladen, so dass es zwischen der mit Tensidmolekülen belegten Oberfläche und den mit Tensidmolekülen belegten Schmutzpartikel zu einer elektrostatischen Abstoßung kommt.
Abb. 9.2:
Elektrostatische Abstoßung der Tenside - Schmutz löst sich
Die elektrostatische Abstoßung bewirkt auch eine Zerteilung der Schmutzpartikel sowie ein erneutes Zusammensetzen dieser untereinander oder mit dem Textil, da sie von Tensiden umgeben sind.
Abb. 9.3:
Zerteilung der Schmutzpartikel
Zur restlosen Beseitigung des Schmutzes ist jedoch auch mechanische Bewegung nötig, daher bestimmt die Bewegung der Wäsche während dem Waschvorgang die erzielte Reinheit mit.
|