In den philosophischen Kontroversen blieb die Geometrie unangetastet. Es hält sich immer noch (sogar noch bis ins 19. Jhdt. - durch z.B.: Carl Friedrich Gauss ) die Definition der Mathematik die Plato und Aristoteles geprägt haben (vgl. das alte Griechenland). Alle Standpunkte gingen davon aus, dass das geometrische Wissen - speziell die Errungenschaften Euklids - kein Problem darstellt, selbst wenn alles andere Wissen problematisch sein sollte. Diese Tatsache kann getrost als Euklid-Mythos bezeichnet werden.
Er las den Satz . Bei G_ , sagte er (er neigte hie und da zu emphatischen Flüchen, um der Sache etwas Würze zu geben) das ist unmöglich! So las er den Beweis, der ihn auf einen anderen Satz verwies; er las auch diesen Satz. Dieser verwies ihn auf einen anderen, den er ebenfalls las. Et sic deinceps, bis er schließlich eindeutig von jener Wahrheit überzeugt war. Dadurch verliebte er sich in die Geometrie."
Hier wird vom Empiristen Thomas Hobbes (1588-1679) berichtet. Für die Rationalisten war die Geometrie das beste Beispiel, um ihre Weltanschauung zu bestätigen ( Spinoza versuchte sogar eine "Geometrie der Gefühle" darzulegen; mit zweifelhaftem Erfolg). Für die meisten Empiristen war sie eher ein peinliches Gegenbeispiel, das es zu ignorieren oder wegzuerklären galt. Selbst am Kulminationspunkt der klassischen Philosophie, bei Kant (vgl. das Anwendungsproblem, Kant), gibt es nur die eine, die euklidische Geometrie, der Euklid-Mythos bleibt also zentrales Element. Das Kantsche Dogma des Apriori übte bis weit ins zwanzigste Jahrhundert hinein einen bestimmenden Einfluss auf die Philosophie der Mathematik aus. Alle drei Grundlagenschulen (Platonismus, Konstruktivismus, Formalismus) waren bemüht, die besondere Rolle, die Kant ihm zuwies, für die Mathematik zu retten.
Geometrie gilt also nach wie vor als der sicherste Wissenszweig, andere bereits entwickelte Bereiche (z.B. Differential- und Integralrechnung) bezogen ihre Legitimation aus der Verknüpfung zur Geometrie.
|