Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


chemie artikel (Interpretation und charakterisierung)

Polymer-elektrolyt-membran-brennstoffzelle pem


1. Atom
2. Erdöl

Die Polymer-Elektrolyt-Membran-Brennstoffzelle PEM ist in ihrer Handhabung unkompliziert. Sie weist bei geringem Gewicht eine hohe Leistungsdichte auf und benötigt statt reinem Sauerstoff nur Luftsauerstoff als Reaktionsgas. Der Wasserstoff ist mit Hilfe eines Reformers zu erzeugen.
Empfindlich reagieren PEM Brennstoffzellen auf Kohlenmonoxid (CO). Diese Gas kann den Anodenkatalysator blockieren, was zu einem Leistungsabfall führt.
Als Elektrolyt kommt eine Protonenleitende Polymer-Elektrolyt-Feststoff-Membrane aus sulfoniertem Polymer zum Einsatz.
Die Leistungsabgabe einer PEM-Brennstoffzelle läßt sich mit sehr großer Dynamik regeln. Daher eignet sie sich hervorragend für den mobilen Einsatz und die dezentrale Energieversorgung.
Derzeit steht die PEMFC im Vordergrund der gesamten Brennstoffzellenentwicklung. Ein Grund hierfür ist das große Potential für die Massenfertigung dieses Zelltyps. So sollen die Kosten eines Zellblocks im Bereich von ca. 200 DM/kW zu liegen kommen.

Die PEM-Brennstoffzelle ist sehr flexibel in der Anwendung, vom Mobiltelefon über Kraft-Wärme-Kopplungsanlagen bis zu Fahrzeugantrieben.
Die hier innerhalb der BEWAG Ausstellung zu besichtigende Brennstoffzelle funktioniert auch nach dem PEM Prinzip.
PEM-Brennstoffzellen-Antriebe werden inzwischen in zahlreichen Prototypfahrzeugen demonstriert. PKW, Kleinbusse und Stadtbusse werden die ersten Fahrzeugtypen sein, die mit PEM-Brennstoffzellen-Antrieben ausgerüstet und verkauft werden.
Lieferwagen und andere leichte Nutzfahrzeuge werden hinzukommen. Einzig schwere Lkw werden in absehbarer Zukunft wahrscheinlich nicht mit PEM-Brennstoffzellen-Antrieb angeboten werden, da sie eine sehr große Reichweite und damit einen sehr großen Wasserstofftank benötigen, und weil der Dieselmotor in großen Lkw sehr effizient ist.
Auch für Schienenfahrzeuge, z.B. für Straßenbahnen oder Regionalzüge, eignen sich PEM-Brennstoffzellen. Dadurch kann auf die Oberleitung verzichtet werden.
PEM-Brennstoffzellen eignen sich hervorragend zur Kraft-Wärme-Kopplung. Dies wird derzeit sowohl für kleine Anwendungen, z.B. Einfamilienhäuser, als auch für größere Gebäude wie z.B. Krankenhäuser, entwickelt.
Mit einer Kommerzialisierung ist innerhalb der nächsten zwei Jahre zu rechnen. Diese Systeme erzeugen den Wasserstoff in Reformern aus Erdgas oder Flüssiggas.
Tragbare Geräte, die eine elektrische Versorgung benötigen, sind ein weiteres Einsatzfeld von PEM-Brennstoffzellen. Ganz prominent ist dabei der Campingbereich. Aber auch Akku-Bohrschrauber oder Rasenmäher können mit PEM-Brennstoffzellen betrieben werden. Erste Brennstoffzellensysteme für Handys und Laptops wurden bereits entwickelt.
Schritt 1
Die in zwei Kreisläufen getrennten Gase Sauerstoff und Wasserstoff wandern vom Gasraum in den Katalysator.
Schritt 2
Die Wasserstoffmoleküle (H2) werden durch den Katalysator in zwei H+ Atome (Protonen) gespalten. Dabei gibt jedes Wasserstoffatom sein Elektron ab.
Schritt 3
Die Protonen wandern durch den Elektrolyten (Membran) zur Kathodenseite.
Schritt 4
Die Elektronen treten in die Anode ein und bewirken so einen elektrischen Stromfluß, der einen Verbraucher mit elektrischer Energie versorgt.
Schritt 5
Jeweils vier Elektronen an der Kathode rekombinieren mit einem Sauerstoffmolekül.
Schritt 6
Die nun entstandenen Sauerstoff-Ionen sind negativ geladen und wandern zu den positiv geladenen Protonen.
Schritt 7
Die Sauerstoff-Ionen geben ihre beiden negativen Ladungen an zwei Protonen ab und oxidieren mit diesen zu Wasser

 
 

Datenschutz
Top Themen / Analyse
Arrow Koffein
Arrow Mineral mit vielen Gesichtern
Arrow Säuren und Laugen/ ph wert
Arrow Allgemeine Informationen über die beiden Farbstoffe
Arrow Ein "Steckbrief" von Ameisen-, Essig- und Citronensäure
Arrow Säuren, Basen, Salze - Bedeutungsvolle Stoffe, aber auch umweltproblematisch?
Arrow Funktionsweise des Relais, Historischer Hintergrund, Telegraphie/Morsen
Arrow Erdöl (Petroleum) - Entstehung
Arrow Aluminiums Recycling
Arrow Drugs


Datenschutz
Zum selben thema
icon Organische Chemie
icon Masse
icon Laugen
icon Aluminium
icon Saurer Regen
icon Salze
icon Polymere
icon Biogas
icon Kohlenhydrate
icon Alkene
icon Isotope
icon Kohle
icon Spülmittel
icon Geschichte
icon Ester
icon Enzyme
icon Definition
icon Alchemie
icon Gewinnung
icon Luft
icon Mol
icon Energie
icon Ethanol
icon Elemente
icon Glas
icon Säuren
icon Brennstoffzelle
icon Ozon
icon Basen
icon Nomenklatur
icon Alkohol
icon Methan
icon Alkane
icon Metalle
icon Erdgas
icon Biographie
icon Ether
icon Akkumulator
icon Seifen
icon Elektrolyse
icon Allgemeines
icon Oxidation
icon Fette
icon Reduption
icon Halogene
icon Benzol
icon Periodensystem
icon Chemische Reaktionen
A-Z chemie artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution