sin2(a ) + cos2(a ) = 1
cosh2(a ) - sinh2(a ) = 1
tan(a ) = sin(a )/cos(a )
1 + tan2(a ) = 1/[cos2(a )]
sin(a +b ) = sin(a )·cos(b ) + cos(a )·sin(b )
sin(a -b ) = sin(a )·cos(b ) - cos(a )·sin(b )
sin(2a ) = 2 sin(a )·cos(a )
cos(a +b ) = cos(a )·cos(b ) - sin(a )·sin(b )
cos(a -b ) = cos(a )·cos(b ) + sin(a )·sin(b )
cos(2a ) = cos2(a ) - sin2(a )
tan(a+b) = [tan(a) + tan(b)]/[1 - tan(a)·tan(b)]
tan(a-b) = [tan(a) - tan(b)]/[1 + tan(a)·tan(b)]
sin(a ) + sin(b ) = 2 sin( (a +b )/2 )·cos( (a -b )/2 )
sin(a ) - sin(b ) = 2 cos( (a +b )/2 )·sin( (a -b )/2 )
cos(a ) + cos(b ) = 2 cos( (a +b )/2 )·cos( (a -b )/2 )
cos(a ) - cos(b ) = -2 sin( (a +b )/2 )·sin( (a -b )/2 )
sin2(a ) = [1-cos(2a )]/2; cos2 = [1+ cos(2a )]/2
cosh(x) = (ex + e-x)/2; sinh(x) = (ex - e-x)/2
|