Die Wurzeln der Philosophie der Mathematik, wie der Mathematik selbst liegen im alten Griechenland. Für die Griechen bedeutete Mathematik Geometrie, die Philosophie der Mathematik somit Philosophie der Geometrie. Für Plato war der Anspruch der Philosophie ein Wissen um ewige und notwendige Wahrheiten zu etablieren. Für Plato war das Konzept der Geometrie ein Schlüsselelement seiner Vorstellung der Welt, er spricht von Geometern und Rechenkünstlern im Sinne von Jägern, "weil sie ihre Figuren und sonstigen Zeichen nicht nach Belieben hervorbringen, sondern nur erforschen, was schon da ist. Sie erfinden nicht, sie entdecken! (Platon, Euthydemos) Nicht nur mit Bezug auf diese Stelle heißt die Lehre, dass die mathematischen Gegenstände eine "ideale", vom Menschen, menschlicher Erkenntnis und insbesondere menschlichem Handeln unabhängige Existenz "an sich" haben, heute meist Platonismus. Heute bedeutet dieses Grund-Dogma die Annahme, mathematische Objekte wären real (einige bekannt, viele unbekannt), wären unveränderlich, existierten außerhalb des Raumes und der Zeit physischer Existenz.
Das Platon selbst auch nur den meisten heute unter diesem Namen gefassten Einzelstandpunkte zugestimmt hätte, ist eher zweifelhaft (vieles was heute als "platonisch" gilt geht auf Neuplatoniker wie Proclus (410-485) zurück). Außerdem hätte Platon der Idee einer vorgegebenen Unendlichkeit, die heute im platonischen Ideenhimmel vertreten ist, nie zugestimmt.
|