Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


physik artikel (Interpretation und charakterisierung)

Laser

Die verschiedenen laserarten


1. Atom
2. Motor

Heutzutage gibt es drei Typen von Lasern, die den Markt \"beherrschen\".
Neben dem Festkörperlaser, den Maiman mit seinem Rubinlaser verwirklicht hatte, gibt es noch den Gaslaser und den Halbleiterlaser.
Die drei Laser unterscheiden sich in der Art des aktiven Mediums, also des Teils, der mit Energie \"vollgepumpt\" wird und in der Art und Weise der Anregung.
Als aktives Medium im Festkörperlaser eignen sich bestimmte Kristalle oder Glas, die mit lichtverstärkenden Atomen angereichert sind. Als Beispiel ist hierbei der Rubinkristall zu nennen, der Spuren von Chrom enthält.
Der bekannteste Festkörperlaser ist der Rubinlaser, der ein rotes Laserlicht ausstrahlt.

Neben dem Rubinlaser ist in erster Linie der Neodym-Glaslaser (Aluminiumoxidkristall) zu nennen, in dessen Glas (dem Feststoff) ca. 1% Neodym-Ione eingeschlossen sind. Der Neodym-Laser sendet ein infrarotes Licht aus.
Ein weiterer Laser, der mit einem Festkörper als aktivem Medium arbeitet, ist der Yttrium-Aluminium-Granat-Laser, abgekürzt YAG-Laser.
Festkörperlaser gehören zur Gruppe der Impulslaser, die durch intensive Lichtblitze (z.B. durch eine Quecksilberdampflampe) angeregt werden und ihrerseits dann wiederum verstärkte Lichtblitze aussenden. Einsatzgebiete des Festkörperlasers sind z.B. das Bohren sehr kleiner Löcher, das Schneiden, Schmelzen und Verdampfen. Bei mehrstufiger Verstärkung und Energiespeicherung wird aus dem Festkörperlaser ein Riesenimpulslaser, mit dem eine Ausgangsleistung von ca. 100 Millionen Kilowatt erreicht werden kann.
Dieser \"Riesenenergieschub\" steht aber nur für den Bruchteil einer Millisekunde zur Verfügung.

Der nächste Laser ist der sogenannte Gaslaser.
Gaslaser enthalten als aktives Medium ein Edelgas, Metalldämpfe oder Molekülgase.
Angeregt wird das Gasmedium durch optisches Pumpen (= Lichtblitze) oder durch Anlegen einer elektrischen Hochspannung, die dann, ähnlich wie in einer Neonröhre (Leuchtstoffröhre), die Gasentladung erzeugt.
Der Gaslaser gehört in die Gruppe der Dauerstrichlaser.
Ein Gaslaser ist z.B. der Helium-Neon- oder der Argonlaser. Der Helium-Neon-Laser sendet ein rotes Licht aus, während der Argon-Laser ein blaues bis grünes Licht aussendet.
Eine wesentlich höhere Leistung als diese beiden Laser hat der Kohlendioxidlaser (CO2-Laser), der ein infrarotes Licht aussendet. Der Kohlendioxidlaser wird vor allem für energieaufwendige Schneideaufgaben verwendet. Die leistungsschwächeren Gaslaser werden dagegen häufig in Präzisionsgeräten für berührungsfreies Messen eingesetzt. Das Einsatzgebiet reicht dabei z.B. von der Dickenkontrolle von Walzblech bis zur Überwachung der Schwebehöhe von Magnetschwebebahnen.
Die ersten Gaslaser gab es 1961. Sie wurden von den drei Physikern A.Javan, W.R.Bennett und D.R.Herriott entwickelt.

Die einfache Gasentladung im Laser dauert nur sehr kurze Zeit. Aus diesem Grund ist ein Gaslaser meistens ein \"Impulslaser\", der kurze Lichtstöße aussendet. Man kann jedoch mit starken Radiowellen aus dem Impulslaser einen Dauerstrichlaser machen.

Als dritte Lasergruppe ist die Gruppe der Halbleiterlaser zu nennen.
Die ersten Halbleiterlaser wurden 1962 erprobt. Das aktive Medium ist in diesem Fall ein Halbleiterkristall, z.B. aus Gallium-Arsenid (GaAs-Laser). Dabei macht man sich den Positiv-Negativ-Übergang (pn-Übergang) des Halbleiters zu nutze. Positiv-Negativ-Übergang bei Halbleitern bedeutet grob gesagt folgendes:
Liegt der n-Halbleiter am Minuspol und der p-Halbleiter am Pluspol, so kann ein Strom fließen; wird die Polung vertauscht, so wird der Stromfluß unterbrochen.
Betrieben werden kann der Halbleiterlaser mit Gleichstrom. Diese Eigenschaft ist entscheidend für den Einsatz des Halbleiterlasers in der Nachrichtenübertragung (als Laserdiode).
Ein großer Vorteil des Halbleiterlasers ist die Möglichkeit, ihn ohne Konstruktionsprobleme nur staubkorngroß bauen zu können. Sein hoher Wirkungsgrad bleibt dabei erhalten.
Vorteilhaft ist auch, daß der Halbleiterlaser im Dauerstrich- und im Impulsbetrieb betrieben werden kann. Halbleiterlaser findet man heutzutage z.B. in CD-Playern (Die Funktionsweise eines CD-Players wird am Ende des Textes erläutert). Den Halbleiterlasern werden die größten Zukunftschancen eingeräumt.

 
 

Datenschutz
Top Themen / Analyse
indicator Biomasse
indicator Berechnung der Schwerpunktlage und der Startmasse
indicator Verwendung des Elektromagnetischen Schwebens
indicator Haifischhaut auf einen Airbus übertragen
indicator Achsen:
indicator Wie entsteht die Wärme im Reaktor ?
indicator Die Anwendungen der Solartechnologie
indicator Wechselfelder und elektromagnetische Strahlung
indicator Messen der Beiwerte
indicator Kernaufbau


Datenschutz
Zum selben thema
icon Transistor
icon Energie
icon Schall
icon Einstein
icon Kernfusion
icon Bomben
icon Strahlung
icon Magnet
icon Kohäsion
icon Welle
icon Diamant
icon Newton
icon Blitz
icon Adhäsion
icon Biomasse
icon Gleitreibung
icon Dichte
icon Watt
icon Entwicklung
icon Otto
icon Laser
icon Reaktor
icon Widerstand
icon Kraft
icon Mikroskope
icon Dynamik
icon Turbine
icon Herstellung
icon Elektrizität
icon Gesetz
icon Strahlung
icon Theorie
icon Kapazität
icon Haftreibung
icon Transformator
icon Wirkung
icon Mechanik
A-Z physik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution