Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


physik artikel (Interpretation und charakterisierung)

Anwendung in der technik


1. Atom
2. Motor

Ein wesentlicher Vorteil des Ultraschalls in der Metallurgie besteht darin, dass im homogenen Material die Schallabsorption wesentlich geringer ist als von Röntgenstrahlen. Es gelingt bis zu 10m lange Strecken zu durchschallen und z.B. Fehlstrukturen des Materials bzw. Verunreinigungen sichtbar zu machen.
Ultraschallprüfung als Qualitätskontrolle:
Vor allem in den letzten Jahren hat sich die Ultraschallprüfung zur Qualitätskontrolle durchgesetzt. Durch höhere Effektivität der Prüftechnik, die Prüfungsmöglichkeit an größeren Schweißnahtdicken und durch bessere Nachweisbarkeit bestimmter Fehlerarten (z.B.: Risse, Bindefehler) ist die Ultraschallprüfung auch zu einer wertvollen Ergänzung der Röntgen- und Gammadefektoskopie geworden, vor allem aufgrund keiner Schädigung der Gesundheit und durch eine kostengünstigere Alternative zu anderen Methoden (wie z.B. Röntgenstrahlen). Bei der Qualitätskontrolle mittels Ultraschall sind zwei Richtungen zu unterscheiden. Einmal kann aus der Messung von Geschwindigkeit und Absorption eine integrale Information über die Struktur, die Qualität des hergestellten Stoffes geliefert werden. Zum anderen liefert der Ultraschall augenblicklich eine Aussage zu Eigenschaften von Verbunden. Der Schallstrahl des Ultraschalls breitet sich aufgrund seiner quasioptischen Eigenschaften gerichtet wie das Licht aus. Beugungserscheinungen treten nur dann auf, wenn die verursachenden Hindernisse die Größenordnung der Wellen haben. Ultraschallwellen werden von Metallen kaum absorbiert. Es wird die Eigenschaft der Reflexion von Schallwellen ausgenutzt, die an Grenzflächen, aber auch an Fehlstellen, die z.B. durch Risse entstanden, auftritt. Trifft solch ein Schallimpuls auf einen Schweißnahtfehler, so wird er je nach Größe und Form an der Trennfläche reflektiert. Die zurückkehrenden Wellen werden vom Prüfkopf wieder aufgenommen und auf dem Bildschirm als mehr oder weniger hohes Fehlerecho angezeigt, es kann somit die Fehlergröße in Länge und Breite, jedoch nicht in Tiefe angenähert nachgewiesen werden (Höhe des Fehlerechos ist nicht immer gleich der Größe des Fehlers). Die Fehlerart des Werkstückes kann allerdings mittels Ultraschall nicht erkannt werden. Eine der wichtigsten Anwendungen ist die Qualitätskontrolle im Flugzeugbau.

Zerstörungsfreie Werkstoffprüfung:
Neben der Qualitätskontrolle wird der Ultraschall also auch zur zerstörungsfreien Werkstoffprüfung verwendet. Ein wesentlicher Vorteil des Ultraschalls in der Metallurgie besteh darin, dass im homogenen Material die Schallabsorption wesentlich geringer ist als bei Röntgenstrahlen und somit eine genauere Bestimmung der Fehler im Werkstück mittels Ultraschalls erfolgen kann. Es gelingt auch bis zu 10m lange Strecken zu durchschallen und Fehlerstrukturen im Material bzw. Verunreinigungen sichtbar zu machen. Bei der zerstörungsfreien Werkstoffprüfung werden Schweißnähte analysiert und der Schweißvorgang kann kontrolliert beobachtet werden. Zur Schweißnahtprüfung werden häufig Impulsverfahren angewendet. Eventuelle Lunker oder andere Inhomogenitäten können leicht aus dem Impulsbild sichtbar festgestellt werden. Es gibt viele kommerzielle Geräte. Neue Entwicklungen auf diesem Gebiet sind dadurch gekennzeichnet, dass komplizierte Wandler eingesetzt wurden, die z.B. einen wählbaren Winkelbereich überstreichen Mit Mikroprozessoren ausgestaltete Geräte können dann äußerst vielgestaltige Auswertungen ermöglichen. Form, Größe, Verteilung der Einschüsse oder Fehlerstellen können ermittelt werden, wenn nicht nur die Amplitude, sondern auch der Frequenzinhalt der erhaltenen Signale analysiert wird.

Ultraschallprüfung:
Das Verfahren beruht auf dem Prinzip der Laufzeitmessung des Schalls. Fehler im Werkstückinneren, wie Risse, Lunker in Gussteilen und Gasblasen, aber vor allem Bindefehler in Schweißnähten, kann man nach Lage und Größe auf einem Bildschirm als Resonanzwelle sichtbar machen, bei fehlerfreiem Werkstück dürfen keine Resonanzwellen auftreten. Die Schallwellen, ausgesendet von einem Schallkopf, werden nämlich an der Werkstückrückwand, aber auch an Fehlerstellen reflektiert. An den Grenzflächen solcher Fehlerstellen treten Änderungen der akustischen Eigenschaften auf und die Ursachen der Schallschwächung in diese Fällen sind diffuse Reflexionen, also keine Absorption. Durch Versetzen des Schallkopfes können Größe und Lage des Fehlers im Werkstück lokalisiert werden. Nach dem selben Prinzip lässt sich auch die Dicke von Werkstücken, z.B.: Blechdicke von Behältern, Rohrwandstärke bestimmen. Die Eichung und Bedienung von Ultraschallgeräten verlangt allerdings viel Geschick und Erfahrung.

 
 

Datenschutz
Top Themen / Analyse
indicator Einphasensynchronmotor
indicator Wasserstoff - Energie der Zukunft
indicator Lupe-
indicator Fotoapparat -
indicator Aufbau der Hülle:
indicator Theoretische Grundlagen / Aufbau
indicator Biomasse -
indicator Der Schall -
indicator Strom aus Wasserkraft -
indicator Glühlampe


Datenschutz
Zum selben thema
icon Transistor
icon Energie
icon Schall
icon Einstein
icon Kernfusion
icon Bomben
icon Strahlung
icon Magnet
icon Kohäsion
icon Welle
icon Diamant
icon Newton
icon Blitz
icon Adhäsion
icon Biomasse
icon Gleitreibung
icon Dichte
icon Watt
icon Entwicklung
icon Otto
icon Laser
icon Reaktor
icon Widerstand
icon Kraft
icon Mikroskope
icon Dynamik
icon Turbine
icon Herstellung
icon Elektrizität
icon Gesetz
icon Strahlung
icon Theorie
icon Kapazität
icon Haftreibung
icon Transformator
icon Wirkung
icon Mechanik
A-Z physik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution