Der axiomatische "Aufbau" ist eine Entdeckung der griechischen Antike. Das für fast zwei Jahrtausende hindurch gültige Paradigma dazu, die Elemente des Euklid (ca.300 v.Chr.), sind bereits der Höhepunkt einer langen Kette von Versuchen zur heute nach dem Autor so benannten "Euklidischen Geometrie". Das auf Beweis beruhende Wissen (apodiktisch) muss nach Aristoteles "aus solchem entspringen, das wahr, ein erstes und Unvermitteltes , bekannter und früher als alles zu Beweisende und Grund für das Bewiesene ist"; dem entsprechen die Axiome (Prinzipien).
Ein deduktives System von Sätzen organisiert diese durch mögliche Übergänge in Gestalt eines Schlusses von Sätzen, die dabei als Prämissen fungieren, auf einen anderen Satz, der Konklusion (vgl. Beweis).Seine Grundbausteine sind die Axiome, die nicht in Frage gestellten Grundlagen. Diese Organisation ist ein kaum überschätzbarer Fortschritt, da sie eine potentiell unendliche Menge von Sätzen als Folgerungsmenge endlich vieler Sätze (Axiomen) erfasst. Das axiomatische Vorgehen liefert sozusagen das Gerüst des Aufbaues, es sagt nichts über die vollständige logische Analyse der hergeleiteten Sätze. In diesem Sinne werden Euklids Elemente allgemein als Versuch verstanden das zeitgenössische mathematische Wissen in einem einzigen Werk mit einem einheitlichen "Methodenarsenal" zu fassen.
Im Laufe der geschichtlichen Entwicklung bildeten sich Teildisziplinen, gleichberichtigt zu Euklids Fundamentaldisziplin Geometrie, die ebenso Axiomatisierungsversuche unternahmen. Auf diese Versuche wird weiter unten eingegangen, ebenso auf die Grenzen der axiomatischen Methode.
|