Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


mathematik artikel (Interpretation und charakterisierung)

Das anwendungsproblem



Der Grund der Anwendbarkeit der Mathematik auf reale Verhältnisse stelle ein äußerst tief liegendes Problem dar, dessen Schwierigkeiten auf allgemein erkenntnistheoretischem Boden liegen.

Felix Klein (1849-1925)

Die Mathematik wirkt "attraktiv", weil sie als Modellfall scheint. Am Beispiel der Mathematik hofften die Philosophen tieferen Einblick in die Struktur, die Mittel und Voraussetzungen von Erkenntnis überhaupt zu gewinnen (sofern man ihr erfahrungsunabhängige, "apriorische" Geltung zuschrieb). Der Grund ist die hohe "Evidenz" mathematischer Aussagen, ebenso die Zuverlässigkeit ihrer empirischen Anwendungen.
Worin bestehen nun diese empirischen Anwendungen?
In der Antike (und schon in vorgriechischen Zeiten) wird man wohl an Längenberechnungen denken, wie z.B. Pythagoras als er die Höhe einer Pyramide aus der Länge ihres Schattens berechnete, oder an die Berechnungen des Eratosthenes. In der Neuzeit denkt man vor allem an die Ingenieurskunst und die Naturwissenschaften, die die Mathematik oft heranziehen, besonders in der Mechanik, der "mathematischen Physik". Heute verfolgen wir eine "Mathematisierung unserer Welt" - man denke nur an die Entwicklung elektronischer Großrechenmaschinen, die ja auf formale Sprachen basieren - die ohne den analytischen und theoretischen Beitrag der Mathematik zu den anderen Wissenschaften nicht möglich wäre. Jedoch sind diese unbestrittenen Erfolge zunächst nur Indiz der Zuverlässigkeit mathematischer Sätze, liefern jedoch keine Erklärung dafür und erlauben auch keinen Rückschluss auf das Zustandekommen und die Beschaffenheit mathematischer Erkenntnis oder apriorischer Erkenntnis überhaupt.
Es gilt zwischen "Anwendungen der Mathematik in der Mathematik" und Anwendungen der Mathematik in den Naturwissenschaften, wie Physik oder Biologie, zu unterscheiden: Diese bezeichnet man als reine, jene als angewandte Mathematik. Reine Mathematik stellt den Anspruch die edelste und reinste Form des Denkens darzustellen, da sie aus der reinen Vernunft hervorgeht, kaum der Außenwelt bedarf und ihr deshalb auch nichts schuldig ist. Dieser Zweig, der darauf verweist das Anwendungen etwas Hässliches an sich haben ("der Geist steht über dem Fleisch") wird auch Hardyismus bezeichnet:

"Ich habe nie etwas gemacht, das gewesen wäre. Für das Wohlbefinden der Welt hatte keine meiner Entdeckungen je die geringste Bedeutung, und daran wird sich vermutlich auch nichts ändern. (..) Nach allen praktischen Maßstäben ist der Wert meines mathematischen Lebens gleich Null, und außerhalb der Mathematik ist es ohnehin trivial.(...) Was man für mich und jeden Mathematiker wie mich vorbringen kann, ist das folgende: ich habe etwas zur Erkenntnis beigetragen, und dieses Etwas hat einen Wert, der sich nur in seinem Umfang, nicht aber in der Art von dem unterscheidet, was die großen Mathematiker oder andere, bedeutende und unbedeutende Künstler geschaffen haben, die etwas, das an sie erinnert hinterließen."
Godfrey Harold Hardy (1877-1947)

Der Nutzen muss somit hinter der Eleganz und der Tiefe zurückstehen. In der angewandten Mathematik steht der Nutzen im Vordergrund. Es ist in vielerlei Hinsicht schwieriger auf diese Art zu arbeiten, da die Fakten zahlreicher und weniger scharf umrissen , die Präzision und ästhetische Ausgewogenheit der reinen Mathematik unerreichbar sind. Die Mathematik gilt hier eher als Metatheorie (z.B. Optimierungs- und Wahrscheinlichkeitstheorie), als stark strukturierte Sprache, die in die vorliegende Datenvielfalt Ordnung bringen soll - ohne jede Rücksicht auf einheitliche mathematische Begriffbildung, axiomatische Erfassung oder gar Fragen der formalen Widerspruchsfreiheit. Auf diese Weise haben heute nahezu alle Teildisziplinen "Anwendungen" gefunden wodurch sich die in der Wissenschaftssystematik tradierte und institutionalisierte Trennung zwischen reiner und angewandter Mathematik als überholt darstellt. Diese Feststellung hat logischerweise auch große Auswirkung auf die Philosophie der Mathematik, verändert sich doch das bild der Mathematik, da es seine Umrisse "verschwimmen" lässt.
Doch zurück zur oben gestellten Frage oder anders (Albert Einstein):

Wie ist es möglich, dass die Mathematik, die doch ein von aller Erfahrung unabhängiges Produkt des menschlichen Denkens ist, auf die Gegenstände so vortrefflich passt? Kann denn die menschliche Vernunft ohne Erfahrung durch bloßes Denken Eigenschaften der wirklichen Dinge ergründen?

 
 

Datenschutz
Top Themen / Analyse
indicator Die Lobatschewskijsche (= hyperbolische) Geometrie
indicator Die allgemeine Relativitätstheorie (1915)
indicator Die Quadratwurzel
indicator Verschiedene Dreiecksarten
indicator Griechisches System:
indicator Funktionen
indicator Die analytische Berechnung von Dreiecken-
indicator Grenzen der axiomatischen Methode
indicator Ein SW-Bild (1 Bit) sieht Folgendermaßen aus:
indicator Todesfallversicherung


Datenschutz
Zum selben thema
icon Funktionen
icon Einstein
icon Pythagoras
icon System
icon Algorithmus
icon Formel
icon Geometrie
A-Z mathematik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution