2.1. Die Universalität des genetischen Codes
Menschen, Tiere und Pflanzen sind nach dem Baukastenprinzip aus Zellen aufgebaut. Menschliche, tierische und pflanzliche Zellen sind sich sehr viel ähnlicher als die kompletten Organismen. Diese Ähnlichkeit wird auf dem Niveau der Moleküle noch ausgeprägter. So sind z.B. die Hormone vieler Säugetiere mit denen des Menschen fast identisch. Selbst zwischen den Eiweißmolekülen der Fliegen und denen des Menschen besteht eine überraschende Übereinstimmung. Besonders ähnlich ist die Art und Weise, in der die genetische Information für die Organismen im Zellkern der befruchteten Eizellen verpackt sind. Wir wissen heute, daß die Bauanleitung für alle Organismen durch die Basensequenz in der DNA des Zellkerns festgelegt ist. Nicht nur die chemische Struktur der Erbsubstanz ist in allen Organismen gleich, sondern auch der genetische Code. Es wird nicht nur das gleiche Alphabet verwendet, sondern überall die gleiche Sprache geschrieben.
Dieser Tatbestand, den man mit dem Begriff der \"Universalität des genetischen Codes\" beschreibt, ist der überzeugendste Beweis für den gemeinsamen Ursprung aller Organismen.
Gentechnologie ist nur deshalb möglich, weil der genetische Code universell ist, d.h. er gilt in allen Organismen, so daß z.B. das Stück Erbinformation, das die Bauanleitung für ein menschliches Wachstumshormon enthält, eingebracht in ein Bakterium, dieses veranlassen kann, menschliches Wachstumshormon zu produzieren.
2.2 Gentechnische Methoden
Die wichtigste gentechnische Methode ist die sogenannte Klonierung. unter diesem Begriff verstand man ursprünglich die Vermehrung erbgleicher Zellen oder Organismen. Heute bezeichnet man als Klonierung aber meist die Übertragung und anschliessende Vermehrung eines fremden DNA-Stückes mit Hilfe einer geeigneten Wirtszelle, z.B einem Bakterium. Bei diesem fremden DNA-Stück kann es sich um DNA fast beliebigen Ursprungs handeln (z.B. tierische, pflanzliche, menschliche DNA). Damit dieses DNA-Stück vom Bakterium \"adoptiert\" werden kann, muss es künstlich in ein Stück bakterielle DNS eingefügt werden. Für diesen Zweck besonders geeignet sind Plasmide, ringförmige, bakterielle Mini-Chormosomen.
Aus Bakterienkulturen gewinnt man größere Mengen reiner Plasmid-DNA. Dann werden Fehler! Textmarke nicht definiert.Restriktionsenzyme verwendet, um die Plasmid-DNA an der Stelle durchzuschneiden, an der das fremde DNA-Stück eingesetzt werden soll. Die Fremd-DNA wird ebenfalls mit Restriktionsenzymen zurechtgeschnitten. Danach werden bakterielle und fremde DNA zusammengemischt und mit Hilfe von weiteren Enzymen, sogenannten Ligasen, verschweisst.
Solche im Reagenzglas zusammengefügte DNA-Moleküle nennt man rekombinante DNA. Rekombinante DNA kann nach Beendigung der Manipulationen wieder in die Bakterien eingepflanzt werden, ganz einfach indem man Bakterienzellen und rekombinante DNA zusammenmischt und leicht schüttelt. Allerdings nimmt nur ein kleiner Teil der so behandelten Bakterienzellen rekombinante DNA auf. Um diejenigen Bakterien herausselektieren zu können, die ein rekombinantes Plasmid \"adoptiert\" haben, wird Plasmid-DNA verwendet, die ein Gen enthält, welches das Bakterium resistent (unempfindlich) gegen ein bestimmtes Antibiotikum macht. Dieses Antibiotikum wird den Bakterien beigemischt, so dass nur Zellen überleben können, die rekombinante DNA aufgenommen haben. Weitergearbeitet wird schließlich mit sog. \"Klonen\" von Bakterienzellen, bei denen alle Zellen durch Teilung aus einer einzigen Mutterzelle hervorgegangen sind (daher der Begriff Klonierung).
2.3 Natürliche Gentransportmechanismen als Grundlage der Gentechnologie
Kritiker der Gentechnologie werfen ihr vor, durch das Überspringen von Artgrenzen, die Schranken der Natur niederzureißen. Richtig jedoch ist, daß die Gentechnologie auf natürliche Methoden des DNA-Transfers zwischen Organismen zurückgreift. Entgegen der landläufigen Ansicht kann nämlich auch in der Natur Erbinformation zwischen verschiedenen Arten ausgetauscht werden und es sind vor allem diese Systeme, die von der Gentechnologie benutzt werden.
2.3.1. Aufnahme von \"nackter\" DNA in Zellen
DNA wird beim Tod von Zellen freigesetzt. Unter bestimmten Bedingungen können lebende Zellen diese DNA-Moleküle aufnehmen und in ihr Genom integrieren. Enthält die DNA genetische Information, ändern sich die Eigenschaften der aufnehmenden Zelle. Diesen Transformation genannten Prozess benützte in den 40er Jahren Avery zum Nachweis der DNA als Erbsubstanz. Als Gentechnologie werden die Versuche von Avery aber noch nicht bezeichnet, weil er die DNA vorher im Reagenzglas nicht modifiziert hatte. Dies gelang erst Cohen und Mitarbeitern 1972. Sie nutzten die Transformation, um ein Darmbakterium durch die Addition manipulierter DNA gegen bestimmte Antibiotika resistent zu machen. Damit war die Gentechnologie im engeren Sinne geboren.
Es stehen für Bakterien viele verschiedene Vektoren zur Verfügung. Einige begünstigen die Expression eingeführter Gene in dem Bakterium, so daß die Produkte der Gene (die Proteine = Eiweißmoleküle) studiert oder geerntet werden können.
2.3.4. Viren transportieren Gene zwischen tierischen Organismen
Auch in tierischen Systemen macht sich der Gentechnologe Eigenschaften präexistenter Systeme zunutze, um DNA-Moleküle in Empfängerorganismen einzuschleußen. Eine zentrale Rolle spielen die Retroviren, die ein breites Spektrum von Säugerzellen infizieren können. Diese Fähigkeit ist auf bestimmten Abschnitten des viralen Erbmaterials lokalisiert und kann von den krankmachenden Genen dieser Viren getrennt werden. Nur die so gewonnenen Defektviren werden zum Transport genetischer Information in tierische Zellen verwendet.
|