Das Ziel eines Lautsprechersystems ist es, den gesamten für den Menschen hörbaren Audio-Bereich wiederzugeben. Für den einzelnen Lautsprecher gilt wie schon gesagt eine Faustregel, daß die Wiedergabe besonders gut gelingt, wenn die Schallwelle größer ist als ihr Erreger. Da jedoch die Wellenlänge im Audiobereichs sehr stark variiert ist es schwer, dies in einem Lautsprecher zu verwirklichen.
Die Wellenlängen im Audiobereich zwischen 20 Hz und 20 kHz liegen weit auseinander:
Wellenlänge bei 20 Hz: C = f 1) = C / f = 344 ms-1 / 20 Hz = 17,2 m
Wellenlänge bei 20 kHz: = C / f = 344 ms-1 / 20000 Hz = 0,0172 m
Wir sehen also, daß wir um ein optimales Klangbild zu bekommen verschiedene Lautsprecher mit verschiedenen Frequenzbereichen ansteuern müßen. Zu diesem Zweck entwerfen wir Filter, die in einem Lautsprechersystem jeweils die passenden Frequenzen an jeden Lautsprecher zuführen.
3.1 Notwendigkeit einer Frequenzweiche
Damit niedrige Frequenzen mit genügender Lautstärke wiedergegeben werden können bedarf es einer großen Membran die genug Hub hat. Diese Membran ist aber auf jeden Fall zu groß, als daß sie Töne aus dem oberen Frequenzbereich wiedergeben könnte. Es liegt also nah für hohe Frequenzen einen Lautsprecher mit deutlich kleinerer Membran zu nehmen. Um einen Ton im Bereich von 20 kHz optimal wiedergeben zu können müßte die Membran kleiner als 0,0172 m sein.
Hätte man nun für jeden Frequenzbereich einen passenden Lautsprecher gefunden, so ist man jedoch dem Ziel erst ein kleines Stück näher gekommen. Würde man nun alle Lautsprecher parallel an das Ausgangssignal eines Verstärkers anschließen, so würden tatsächlich alle Lautsprecher mit dem ihnen zugehörigen Frequenzbereich angesteuert. Aber eben nicht nur mit dem zugehörigen Bereich sondern mit allen anderen Frequenzen genauso, was einen großen Qualitätsverlust bedeuten würde. Auf der einen Seite wird der Hochtöner aufgrund seines geringen Hubs nicht der Amplitude des Tieftöners folgen können, auf der anderen Seite würden hohe Frequenzen auf der Membran des Baßlautsprechers starke Eigenschwingungen verursachen. Dies hätte einen Steigerung des Klirrfaktors zur Folge.
Nach diesen Einwänden wird klar, daß das Signal aus dem Verstärker gefiltert werden muß bevor man es den Hoch- und Tieftönern einspeist.
3.2 Funktion einer Frequenzweiche
Als erstes muß das Baßsignal auf den Hochtönern gedämpft werden. Diese Aufgabe übernimmt der Hochpaßfilter, welcher niedere Frequenzen dämpft und Frequenzen über der sog. Trennfrequenz ft durchläßt. Liegt zum Beipsiel die Trennfrequenz eines Hochpassfilters bei 5000 Hz, so liegen die Frequenzen oberhalb der 5000 Hz Grenze auf dem Durchlaßband, Frequenzen unterhalb der 5000 Hz auf dem Sperrband.
Der Hochpaßfilter macht nicht schlagartig an dieser Stelle zu, sondern er filtert den Übergang mit einer bestimmten Steigung. Ist diese Steigung gering, so klingen die Frequenzen des Sperrbandes langsam aus. Optimal ist ein steiler Dämpfungsverlauf, so wird der Membranhub des Hochtöners gedämpft und sein Wiedergabebereich erklingt optimal. Der Dämpfungsverlauf wird in Dezibel pro Oktave gemessen. Je höher der dB-Wert ist, desto steiler ist der Abfall bzw. Anstieg der Frequenzdurchlaßkurve, desto ausgeprägter ist also die Unterdrückung der unerwünschen Frequenzen.
Nun müßen noch die hohen Frequenzen vom Tieftöner gedämpft werden. Diese Aufgabe übernimmt der Tiepaßfilter, welcher die Frequenzen unterhalb von der Trennfrequenz ft passieren läßt - oberhalb läßt er wiederum die Frequenzen langsam abklingen.
Fast so unmöglich wie den gesamten Audiobereich des Menschen mit einem Lautsprecher darzustellen ist es, ihn mit zwei Lautsprechern komplett zu haben. Es ist mindestens noch ein Mitteltöner notwendig. Man redet dann von 3-Weg-Lautsprechern. Nun muß man mit mehr als zwei Filtern arbeiten. Es liegt am Konstrukteur der Frequenzweiche die Trennfrequenzen festzulegen, von denen es beim 3-Wege-Lautsprecher natürlich zwei gibt.
3.2 Erstellung einer Durchlaßkurve
Die Durchlaßkurve läßt sich in zwei Arten darstellen: in einem I(f)-Diagramm oder in einem dB-f-Diagramm. Die gängige Art der Darstellung ist ein dB-f-Diagramm, das schematisch bei einer 3-Wege-Frequenzweiche wie folgt aussieht:
Abb. der Durchlaßkurve auf Seite 39 im großen Buch
Da es mir nicht möglich war die Lautstärke in Dezibel zu messen maß ich anhand der Amplitude der Welle die Stromstärke I(f). Somit erstelle ich keine typische Durchlaßkurve mit einer Lautstärke- und einer Frequenz-Achse, sondern stelle den Verlauf in einem I(f)-Diagramm dar.
Versuch:
An die Zwei-Wege-Weiche der Box, die ich schon in meinen Versuchen zu den Lautsprechern benützte, schloß ich einen Frequenzgenerator an. Direkt von den Ausgängen auf der Weiche zum Hoch- und Tiefpaß ging ich dann in den Oszillographen.
Ergebnisse:
Ich konnte feststellen, daß der Tiefpaß tatsächlich bei einer bestimmten Trennfrequenz zumachte und nach unten hin immer mehr Strom durchließ.
Das Gegenteil war beim Hochpaß festzustellen. Er ließ die oberen Frequenzen gut durch und machte um die gleiche Trennfrequenz nach unten hin zu.
Meßtabelle Tiefpaß/Hochpaß:
Frequenz [Hz] Strom [Skt] Frequenz [Hz] Strom [Skt]
Tiefpaß Strom [Skt]
Hochpaß
100 16 1500 3 0,5
150 15 2000 3,5 1
200 13 2500 2,5 2
250 12 3000 1 2,5
300 11 4000 0,5 3
350 10 5000 0,5 3,5
400 9 6000 4
450 8 7000 4,5
500 7 8000 5
600 6 9000 5
700 5,5 10000 6
800 5 15000 8
900 5 20000 9,5
1000 4,5
Kurve:
3.4 Passive Frequenzweichen
Wir unterscheiden hauptsächlich zwischen passiven und aktiven Frequenzweichen.
Der wesentliche Unterschied ist, daß bei aktiven Weichen im Gegensatz zu passiven Weichen noch eine Verstärkung der einzelnen Bandpässe in der Frequenzweiche möglich ist.
Kondensatoren, Spulen und Widerstände sind die Hauptbestandteile einer passiven Frequenzweiche. Die von mir beschriebenen Polynomfilter werden grundsätzlich von einer konstanten Spannungsquelle gespeist und haben am Ende einen Ohm´schen Widerstand.
Schaltbild eines Tief- und Hochpasses:
Abb. 4
3.4.1 Spulen
Eine Spule in einer passiven Frequenzweiche hat eine Induktivität zwischen 0,1 mH bis 20 mH mit einem möglichst geringem Verlustwiederstand Rl. Bei reinen Luftspulen (Spulen ohne Kern) ist Rl gleichgroß wie der Gleichstromwiderstand der Spule und somit stark von Durchmesser und Länge des Wicklungsdrahtes abhängig. Ein Kern würde zwar die Induktivität der Spule stark erhöhen und somit kürzeren und dickeren Draht ermöglichen, jedoch der Kern braucht auch Energie, was einem erhöhten Verlustwiderstand gleichzusetzen wäre. Der Verlustwiderstand besteht also schlußendlich aus dem Gleichstromwiderstand, der Wicklung und den Verlusten durch die Ummagnetisierung im Kern.
Die Induktivität L einer Spule hängt zum großen Teil von der Anzahl der Wicklungen sowie der geometrischen Form der Spule ab. Der Verlustwiderstand wird geringer, wenn der Draht stärker wird. Wird der Draht stärker werden jedoch auch die Abmessungen der Spule größer, was zur Folge hat, daß ab einer bestimmten Induktivität ein Kern unabdingbar wird. Da die Spulen auf der Platine der Frequenweiche sehr dicht beieinander liegen ist es wichtig ihre Achsen senkrecht zueinander zu halten, um einer gegenseitigen Störung ihrer Magnetfelder vorzubeugen.
3.4.2 Kondensatoren
Die Kondensatoren in einer Frequenzweiche haben meistens eine Kapazität von ca. 1 F bis 500 F. Oft werden Folienkondensatoren benutzt.
Da passive Filter im niederohmigen Bereich liegen, kann man die Verluste von Kondensatoren meistens vernachläßigen. Dieser Verlustwiderstand Rc wird in einem Ohm´schen Widerstand paralell zur Kapazität C ausgedrückt.
Die Spannung auf dem Kondensator darf dessen Nennspannung auf keinen Fall überschreiten. Diese Spannung ist aber nicht so leicht auszurechenen wie ein Ohm´scher Spannungsteiler, da sie von der Frequenz und den Filtern abhängt.
3.5 Aktive Frequenzweichen
Die Besonderheit der aktiven Frequenzweiche ist, daß die Funktion des Hoch- und Tiefpasses durch eine aktive Filterschaltung erzeugt wird. Aktiv meint, daß eine Verstärkung innerhalb der einzelnen Filter stattfindet. Die Hoch- und Tieftöner werden mit jeweils eigenen Endverstärkern angesteuert. Der große Vorteil davon ist, daß der komplette Filter von dem Lautsprecher entkoppelt ist, man muß sich also beim Aufbau der Filter keine Gedanken über Kompensation der Eigenimpedanz der Lautsprecher machen. Wenn Hoch- und Tieftöner verschiedene Wirkungsgrade haben, so lassen sich diese ohne weiteres angleichen, in dem man einfach die jeweiligen Endverstärker anders einstellt.
Die Leistung der Endverstärker richtet sich nach dem Wirkungsgrad und natürlich der Belastbarkeit der angeschloßenen Lautsprecher.
Der eigentliche Kern der aktiven Frequenzweiche stellen die Filter dar. Sie sind nicht wie bei der passiven Weiche komplett vernetzte Elemente, sondern bestehen aus sogenannten Operationsverstärkungsschaltungen, welche sich dadurch auszeichnen, daß sie aus mehreren von einander entkoppelten Stufen bestehen. Die aktive Filtertechnik beinhaltet unendlich viele verschiedene Aufbaumöglichkeiten, als bekanntes Beispiel z.B. den Sallen-Key-Filter (siehe Abb. 5).
|