Die Entwicklung der Fusionsforschung/
Die Fusionsforschung begann gleich nach dem II. Weltkrieg mit viel Optimismus, denn es herrschte vor allem in Amerika der Glaube, daß man die Kernfusion mit einem ähnlich großen materiellen Aufwand wie im Manhattan Projekt entwickeln und zur Serienreife bringen könnte. Die ersten Anstrengungen wurden unabhängig voneinander und unter strenger Geheimhaltung in den USA, der UdSSR und GB betrieben. Da die grundlegenden Probleme unterschätzt wurden kam es zur Aufhebung der Geheimhaltung zugunsten internationaler Zusammenarbeit und Neuorientierung der Strategie: nicht mehr die Konstruktion eines Reaktors, sondern Probleme der Plasmaphysik standen für die kommenden zehn Jahre mehr im Vordergrund der Forschung.
Die Fusionsforschung ist aus der Forschung an der Wasserstoffbombe hervorgegangen. Die Wasserstoffbombe stellt den Beweis der Möglichkeit der Kernfusion dar, jedoch ist diese Fusionsreaktion unkontrolliert. Direkter Nachfolger, zunächst streng geheimgehalten, war die laserinduzierte Trägheitsfusion. Mit Hilfe der Pellets sollte die Explosion der Wasserstoffbombe im kleinen simuliert werden. Dies und auch die starken Laser, die mit dieser Technik verbunden sind, bilden mögliche Grundlagen für SDI. Die Forschungen an der Laserfusion wurden jedoch schließlich der zivilen Fachwelt geöffnet und dem zivilen Ziel der Energieforschung unterstellt. Jedoch hing diesem Projekt immer der militärische Aspekt an, mit dem sich viele Forscher nicht in Verbindung sehen wollten. So begann man nach anderen Wegen der Energieerzeugung durch Kernfusion zu forschen. Anfang der Fünfziger Jahre hatte die Sowjetunion bereits erste Tokamak-Programme gestartet. Schon früh kam es hier zu einem Gedankenaustausch unter den Nationen. Japan und USA wie auch die europäischen Staaten begannen Fusionsprogramme im Bereich des magnetischen Einschlusses. Die Forschungsergebnisse veranlaßten die Beteiligten zu ersten Prognosen über die Realisierung der Kernfusion. So sagte 1955 der Präsident der Genfer \"Atoms for Peace\" Konferenz, daß die Fusionsforschung 20 Jahre zur Lösung der Probleme brauchen würde.
Daß dieser Zeitraum eindeutig zu kurz gewählt war, zeigte sich schon bald. Diverse Experimente in den verschiedenen Bereichen des magnetischen Einschlusses sowie der Laserinduzierten Fusion ergaben neue Probleme und damit eine Revision der Prognosen: 1978 stellt man fest, daß die in den Experimenten erreichten Plasmaparameter innerhalb von Fünf Jahren um den Faktor zehn gesteigert werden konnten, was bedeuten würde, daß der \"Breakeven\", als der Punkt mit ausgeglichener Energiebilanz 1981 - 82 zu erreichen sei und daß noch deutlich vor 2030 die Fusionsreaktoren einen nennenswerten Anteil an der Energieversorgung nehmen würden.
Am 1.6.1978 wird die JET-Gruppe gegründet, die die Entwicklung, den Bau und die Forschung für das auf 12 Jahre ausgelegte JET-Projekt übernehmen sollte. Am 25.6.1983 wird das erste Experiment im JET durchgeführt. Ziel des Projektes soll in einer späteren Ausbauversion des JET ein Brennzyklus von 20 s sein. Etwa zur gleichen Zeit wie JET, teilweise einige Jahre später, teilweise früher laufen Projekte der UdSSR, Amerikaner und Japaner mit Namen T-15, TFTR und JT-60 an, die in der Größenordnung von JET liegen und ähnlich nahe dem Lawson Kriterium kommen, jenem Punkt, an dem thermonuleares Brennen einsetzt. Die Zielsetzungen der Projekte sind geringfügig unterschiedlich, gemeinsames Ziel ist es jedoch, zu thermonuklearem Brennen in Zeiten bis zu 100 s zu gelangen. Bei allen Projekten handelt es sich um Tokamaks.
Seltsamerweise erst Ende der 80er Jahre beginnen Forschungen zur Sicherheit der Tokamaks. TESPE, ein Projekt der Kernforschungsanlage Karlsruhe (KfK), stellt ein verkleinertes Modell für einen Fusionsreaktor dar und ist neben Experimenten zu Wandmaterialien auch um die Erforschung von Störfällen bemüht, unter anderem bezüglich der \"Disruption\", also dem plötzlichen Zusammenbrechen des Manetfeldes. Die Probleme und Ergebnisse, die die Forscher aus Projekten wie JET ziehen, erzwingen eine erneute Revision der Prognosen bezüglich der ersten Fusionskraftwerke. Erst 2050, also Mitte des nächsten Jahrhunderts, wird die Kernfusion beginnen, einen Marktanteil an der Energieerzeugung zu erlangen. Und noch länger wird es dauern, bis ein nennenswerter Anteil der Energie aus Fusionsreaktoren kommen wird.
Nichts desto trotz ist bereits die Planung des nächsten Projektes in Angriff genommen. ITER - der Internationale thermonukleare Experimental-Reaktor wird 1987 ins Leben gerufen. Er soll der letzte Versuchsreaktor vor Erstellung des DEMO-Reaktors sein. Letzterer soll in ca. 30 Jahren als erster funktionsfähiger und stromerzeugender Reaktor die wirtschaftliche Produktion von Strom mittels Kernfusion demonstrieren. ITER selbst soll ab 1997 gebaut werden, 2004 fertiggestellt sein und 2005 in Betrieb gehen. Seine Leistung soll bereits 1000 MW betragen. Durchgeführt wird dieses Projekt von den USA, GUS, Japan und der EG. Wissenschaftliche Erkenntnisse von allen Großanlagen der beteiligten Staaten fließen in dieses Projekt.
|