Die COOH-Gruppe einer Aminosäure kann sich mit der NH2-Gruppe einer anderen Aminosäure unter Wasseraustritt verbinden, dabei entsteht ein Dipeptid. Lange Ketten von peptidisch verknüpften Aminosäuren nennt man Polypeptide.
Erreicht eine Peptidkette eine gewisse Länge, so kommt es innerhalb des Moleküls zur Ausbildung zusätzlicher schwacher Bindungen, die Polypeptidkette nimmt eine räumliche Gestalt an -> Protein.
In den Proteinen treten 20 verschiedene Aminosäuren auf. Die Reihenfolge der Aminosäuren in einer Polypeptidkette heißt Aminosäuresequenz oder Primärstruktur. Die Aminosäurekette besitzt ein Ende mit freier Aminogruppe und ein Ende mit freier Carboxylgruppe, das Polypeptid hat somit eine Richtung.
Sekundärstruktur: Alpha - Helix (die Polypeptidkette ist schraubig angeordnet und durch Wasserstoffbrücken stabilisiert), Beta - Helix (eine andere stabile Struktur der Polypeptidkette, die sich bei der Faltblattanordnung der Peptidebenen ergibt).
Tertiärstruktur (Funktionsstruktur)=Raumgestalt der Kette (Helix/Faltblatt):
unpolare Aminosäure-Seitenketten bevorzugen eine enge Nachbarschaft zueinander und ordnen sich dabei vor allem im Molekülinneren an. Dadurch drängen sie gewissermaßen die Wassermoleküle der das Proteinmolekül umgebenden wäßrigen Lösung aus dem Innern des Proteinmoleküls heraus. Man bezeichnet diese Erscheinung als hydrophobe Wechselwirkung.
Quartärstruktur: Raumgestalt eines Proteinkomplexes (mehrere Proteine)
Proteine enthalten stets die Aminosäuren Glutaminsäure und Asparaginsäure, deren Seitenkette eine weitere Carboxylgruppe aufweist. In den Proteinen gibt es auch stets Aminosäuren mit einer zusätzlichen Aminogruppe in der Seitenkette, diese kann ein Proton aufnehmen (basisch reagieren), dies sind basische Aminosäuren. Proteine mit Überschuß an basischen Aminosäuren nennt man basische Proteine, solche mit einem Überschuß an sauren Aminosäuren saure Proteine. Zu den sauren Proteinen gehören viele Enzyme.
Erwärmt man Proteine auf eine Temperatur von über 60°C, so wird infolge der starken Wärmebewegung die Tertiär- und z.T. auch die Sekundärstruktur zerstört. Das Protein ist damit denaturiert.
|