Das Vorhandensein des Ruhepotentials ist die Grundlage für eine rasche Impulsleitung. Es ermöglicht die Leitung eines Impulses ohne eine unmittelbar auf den Reiz folgende Generierung eines elektrischen Feldes; somit wird eine extrem rasche Reaktion auf den einwirkenden Reiz möglich. Das Ruhepotential stellt sozusagen einen leicht anzapfbaren Energiespeicher dar.
Die Ausgangssituation ist sowohl im Inneren der Zelle als auch im Äußeren eine Flüssigkeit, in der K+- und Na+-Ionen gelöst sind, wobei das Äußere etwa zehnmal so viele Na+-Ionen wie das Plasma enthält; das Konzentrationsgefälle der Kaliumionen ist umgekehrt und beträgt etwa 40:1. Um diesen Gradienten zu erhalten, ist die Zellmembran mit sogenannten Pumpen durchsetzt, die Ionen durch die Membran selektiv durchlassen.
Dieser Ionenflux erfolgt in fixierter Stöchiometrie, d. h. es werden gleichzeitig drei Natriumionen aus der Zelle und zwei Kaliumionen in die Zelle transferiert. Ein stöchiometrisch fixierter Transport von Ionen wird als Cotransport bezeichnet, im speziellen, dem gegengerichteten Transport gleichsinnig geladener Ionen, als Antiport. Sollten bei diesem Vorgang Ionen in gleichem stöchiometrischem Anteil bewegt werden, so würde er als elektroneutral bezeichnet werden. Im vorliegenden Fall jedoch wird ein elektrischer Gradient erreicht, weswegen der Pumpvorgang rheogen genannt wird. Hier erfolgt der Ionentransport weiters noch aktiv: Der Transportprozeß wird durch energieliefernde Stoffwechselvorgänge ermöglicht. Die Kalium-Natrium-Pumpen sind Transport-ATPasen - Energie wird aus der Hydrolyse von ATP zu ADP bezogen. Aktive rheogene Pumpen werden des weiteren auch als elektrogen bezeichnet, da sie ein Transmembranpotential durch gekoppelten Flux generieren.
Die Kalium-Natrium-Pumpe, die eine relative Molekülmasse von 275000 aufweist, kann rund 100 Na+-Ionen und 130 K+-Ionen in der Sekunde transportieren. Eine kleine Nervenzelle erreicht, da sie etwa eine Million dergestalter Pumpen aufweist, eine Transportleistung von bis zu 200 Millionen Na+-Ionen pro Sekunde.
Nun ist aber die Permeabilität der Membran für die K+-Ionen, die ein recht starkes Konzentrationsgefälle aufweisen, besonders hoch. Da zu jedem Kation aber auch ein entsprechendes Anion gehört, das jedoch nicht die Zellmembran durchdringen kann, entsteht kontinuierlich ein Anionenüberschuß in der Zelle. Ein elektrisches Feld entsteht, das bei Vorhandensein eines gewissen Gradienten keinen weiteren Kationen-Ausstrom gestattet. Dieses Feld wird als Membranpotential bezeichnet, welches im Ruhezustand etwa -70 mV beträgt.
Dieses im Inneren der Zelle stets vorhandene negative Ruhepotential ist der Ausgangspunkt für eine sofort verfügbare Energie zu Weiterleitung des eingehenden Impulses.
|