The National Advisory Comitee for Aeronautics was founded in 1915. Although it were the American Wright brothers, who made the first controlled flight in an airplane, the United States soon lagged behind the Eurpoeans in aviation techniques. Because of World War I, the Europeans forced the development of new aircrafts. As a consequence, scientists within the United States demanded a national organization, which would help the States to keep pace with the rapid developments in aeronautics - the NACA.
For fiscal 1915, the fledgling organization received a budget of $5000, an annual appropriation that remained constant for the next five years. This was not much even by standards of that time, but it must be remembered that this was an advisory committee only, "to supervise and direct the scientific study of the problems of flight, with a view to their practical solutions."
Once the NACA isolated a problem, its study and solution was generally done by a government agency or university laboratory. The main committee of 12 members met semiannually in Washington. An Executive Committee of seven members, chosen from the main committee living in the Washington area, supervised the NACA\'s activities and kept track of aeronautical problems to be considered for action.
The first NACA research center was opened at Langley in Hampton, Virginia. In a wartime environment, the NACA was soon busy. It evaluated aeronautical queries from the Army, conducted experiments and ran engine tests. From the beginning the NACA was not a military organization, however it's research work while World War I focused on military affairs and the Langley Memorial Aeronautical Laboratory was built on a US Army Base. Soon a small airfield and a wind tunnel for aerodynamics testing were set up. Although after the war, the Army transferred its research facilities to Dayton, Ohio, military influence at Langley remained high. In 1920 the NACA owned a airfield, a wind tunnel, a small dynamometer lab, a warehouse and a administration building. With a total staff of 11 people there was plenty room to grow. The Universities over the country began to offer education in aeronautics theory and engineering. Young engineers joined the NACA and the Langley's staff went up to 100 in 1925. During the '20s and '30s, NACA research turned the art of aeronautics into a disciplined engineering profession. Military and private airplane designs greatly benefited from NACA's research, which led to improved wing shapes and engines and retractable landing gears. With more and more commercial airlines in business, the research also concentrated on maximum passenger safety and comfort.
After a while, a new field of aeronautical research emerged: Rocketry. Inspired by Jules Verne and others, scientists around the world became increasingly interested in Rocketry. NACA conducted some rocket experiments, which not only led to the use of rockets by the United States armed services in World War II, but later also led to the development of jet propulsion engines, which replaced the older propeller engines. The NACA - born in response to European progress in aeronautics - benefited through the employment of Europeans, and profited from a continuous interaction with the European community.
Hitler's Germany stopped to share its research results in expectation of the second World War. The "Verein für Raumschiffahrt", which employed the famous Wernher von Braun, was very successful in developing rockets and jet propulsion and therefore the Germans were the only nation, which used ground to ground rockets during the war (The V-2 rocket, Vengance-2). They also put the only WWII jetfighter plane in the skies, the Messerschmitt Me-262 - in 1945, shortly before Germanys surrender and therefore too late to play an active role in the european air war.
For the NACA, the war was a pretty good reason to let the government multiply their resources and fundings. For example: the NACA counted 426 staff at Langley in 1938. After the war, in 1945 total personnel at Langley exceeded 3000 people. In 1941 a second Laboratory, the Ames Aeronautical Laboratory in California, followed in 1942 by the Aircraft Engine Research Laboratory in Ohio were established. NACA's success in producing fast and manoeuvrable planes gave the US Air Force the deciding edge in aerial combat during WWII.
In October 1942, America\'s first jet plane, took to the air over a remote area of the California desert. There were no official NACA representatives present. The NACA, in fact, did not even know the aircraft existed, and the engine was based entirely on a top secret British design. After the war, the failure of the United States to develop jet engines and supersonic designs was generally blamed on the NACA. Critics argued that the NACA, as America\'s
premier aeronautical establishment (one which presumably led the world in successful aviation technology) had somehow allowed leadership to slip to the British and the Germans during the late 1930s and during World War II. The US secret service initiated the "Operation Paperclip", a high-level government plan to scoop up leading German scientists and engineers during the closing months of World War II.
Following the war, the NACA, with German scientists know-how, increasingly focused on jet propulsion and the attainment of even higher altitudes and speeds. In 1947 the NACA X-1 (eXperimental jet-1) was the first plane to brake the sound barrier and go supersonic (Mach 1 equals the speed of sound. The designation is named after the Austrian physicist, Ernst Mach).
Helicopters, introduced into limited combat service at the end of World War II, entered both military and civilian service in the postwar era. The value of helicopters in medical evacuation was demonstrated in Korea, and a variety of helicopter operations proliferated in the late 1950s. The NACA flight-tested new designs to help define handling qualities. Using wind tunnel experience, researchers also developed a series of special helicopter airfoil sections, and a rotor test tower aided research in many other areas.
All of this postwar aeronautical activity received respectful and enthusiastic attention from press and public. Although the phenomenon of flight continued to enjoy extensive press coverage, events in the late 1950s suddenly caused aviation to share the limelight with space flight.
Among the legacies of World War II was a glittering array of new technologies spawned by the massive military effort. Atomic energy, radar, radio telemetry, the computer, the large rocket, and the jet engine seemed destined to shape the world\'s destiny in the next three decades and heavily influence the rest of the century. The world\'s political order had been drastically altered by the war. Much of Europe and Asia were in ashes. On opposite sides of the world stood the United States and the Soviet Union, newly made into superpowers. It soon became apparent that they would test each other\'s mettle many times before a balance of power stabilized. And each nation moved quickly to exploit the new technologies.
The atomic bomb was the most obvious and most immediately threatening technological change from World War II. Both superpowers sought the best strategic systems that could deliver the bomb across the intercontinental distances that separated them. Jet-powered bombers were an obvious extension of the wartime and both nations began putting them
into service. The intercontinental rocket held great theoretical promise, but seemed much further down the technological road. Atomic bombs were bulky and heavy. A rocket to lift such a payload would be enormous in size and expense. The Soviet Union doggedly went ahead with attempts to build such rockets. The US Army imported Wernher von Braun and the German engineers who had created the wartime V-2 rockets to help to develop the Atlas intercontinental ballistic missile, a project that had been dormant for four years. Fiscal 1953 saw the Department of Defense for the first time spend more than $1 million on missile research. By the mid-1950s NACA had modern research facilities that had cost a total of $300 million, and a staff totaling 7200.
Against the background of the "Cold War" between the United States and the USSR and the national priority given to military rocketry, the NACA's sophisticated facilities inevitably became involved. With each passing year it was enlarging its missile research in proportion to the old mission of aerodynamic research.
As part of the US participation in the forthcoming International Geophysical Year, it was proposed to launch a small satellite into orbit around the Earth. When USSR announced, that they also would launch a satellite into orbit, the space race was extending beyond boosters and payloads to issues of national prestige.
In 1957, when the "beep, beep" signal from Sputnik 1 was heard around the world the Soviet Union had orbited the world's first manmade satellite.
When the US Army finally launched their Explorer 1 satellite, the payload weighed only 2 pounds against the 1100 pounds of Sputnik 2. An experiment aboard the satellite reported mysterious saturation of its radiation counters at 594 miles altitude. Professor James A. van Allen, the scientist who had built the experiment, thought this suggested the existence of a dense belt of radiation around the Earth at that altitude - the van Allen radiation belts.
The US government sought for an agency, which would help the United States to catch up with the fast advancing USSR space program. Either the Department of Defense or the NACA should begin with the development of a national space program.
The NACA research team had come up with a solid, longterm, scientifically based proposal for a blend of aeronautic and space research. Its concept for manned spaceflight, for example, envisioned a ballistic spacecraft with a blunt reentry shape, backed by a world-encircling tracking system, and equipped with dual automatic and manual controls that would enable the astronaut gradually to take over more and more of the flying of his spacecraft. Also NACA offered reassuring experience of long, close working relationships with the military services in solving their research problems, while at the same time translating the research into civil applications. But NACA's greatest political asset was its peaceful, research-oriented image. President Eisenhower and Senator Johnson and others in Congress were united in wanting above all to avoid projecting cold war tensions into the new arena of outer space.
|