Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


physik artikel (Interpretation und charakterisierung)

Reale gase


1. Atom
2. Motor

Im 19. Jahrhundert haben sich viele Wissenschaftler mit dem Verhalten von Gasen und besonders mit dem Vorgang des Verflüssigens beschäftigt . Hierbei haben sie festgestellt , daß die experimentell ermittelten Kurven nicht ganz den Kurven der idealen Gase folgen , sondern von ihnen abweichen . Dies ist besonders stark in dem Bereich der Kurve zu sehen , in dem sich das Gas verflüssigt . Da die Zustandsgleichungen der idealen Gase keine Verflüssigung vorsehen , mußten sie korrigiert werden . In den Gleichungen mußten das Eigenvolumen der Gasmoleküle sowie die intermolekularen Wechselwirkungen berücksichtigt werden , um reale Gase besser zu beschreiben . J. van der Waals hat die wohl bekannteste Gleichung , die wohl auch am häufigsten benutzt wird , aufgestellt . Er hat die ideale Zustandsgleichung ( für 1 mol Gas ) folgendermaßen korrigiert :
Er subtrahierte vom Volumen V einen Teil b , der inkompressibel ist , also das Eigenvolumen der Gasmoleküle darstellt . Zusätzlich addierte er zum Druck p den sogenannten Binnendruck , der im Gas herrscht . Dieser Teil stellt die Anziehungskräfte zwischen den Molekülen dar . Prallen Moleküle an eine Wand , so überwiegen die Anziehungskräfte der Moleküle , die nach innen wirken . Diese Kraft ist proportional der Anzahl der Moleküle in der Volumeneinheit des Gases bzw. seiner Dichte . Die Anzahl der Moleküle in der Grenzfläche ist ihrerseits jedoch auch der Dichte des Gases proportional , so daß der resultierende innere Druck proportional dem Quadrat der Dichte oder umgekehrt proportional dem Quadrat des Molvolumens ist . So ergibt sich die zentrale Zustandsgleichung der realen Gase , die van-der-Waalssche Gleichung ( hier für 1 mol ) :
RT (h)
Der Proportionalitätsfaktor a , der für die Anziehungskräfte steht , und der Wert b sind für jedes Gas unterschiedliche Werte , wobei b nach van der Waals gleich dem vierfachen des Eigenvolumens der Moleküle ist .




- 7 -
3.1. Das Verhalten realer Gase
Diese Zustandsgleichung (h) nach p aufgelöst ergibt die Gleichung
, (i)
die als Funktion folgende Kurven ergibt , bei denen die Temperatur jeweils konstant gehalten wurde und für a und b die idealen Werte für Wasser , nämlich a=5,58 und b=0,031 und R=0,08206 eingesetzt wurden , die in entsprechenden Einheiten angegeben werden müssen , damit sie in der Gleichung angewandt werden können .
In folgender Tabelle sind die Parameter für einige Stoffe angegeben :
Stoff a ( ) b ( )
0,192 0,022

5,58 0,031
1,37 0,039

1,38 0,032
3,67 0,043
( aus : Greiner,Neise,Stöcker : Thermodyn. und Statist. Mathem . ; S.20 )
- 8 -


Deutlich zu sehen ist bei Kurven unter 647°K , daß sie ein lokales Minimum sowie ein lokales Maximum und zwei Wendepunkte haben . Hier erhält man für einen Druck drei Werte für das Molvolumen . Oberhalb dieser Temperatur erhält man nur einen reellen Wert ( hyperbelartiger Verlauf ) . Unterhalb von 647°K sind es jedoch Kurven 3. Ordnung . Hier lassen sich auch , sofern vorhanden , die Nullstellen der Funktion berechnen . Der Bereich zwischen den Nullstellen ist physikalisch gesehen völlig irreal , da hier der Druck negativ wäre . Das bedeutet , hier wäre der Binnendruck a zu groß . Das gilt z.B. für Wasser bei der Temperatur 473°K im Intervall , da die Nullstellen der Funktion hier liegen :
RT
nach p aufgelöst mit a=5,58 , b=0,031 , R=0,08205 und T=473°K und gleich null gesetzt :
(j)

Nullstellen :

Außerdem haben die Kurven unterhalb von 647°K einen Abschnitt zwischen den lokalen Extrema , in dem der Graph steigt . Das bedeutet , daß hier mit abnehmendem Druck auch das Volumen kleiner wird , das Gas verdichtet sich selbständig , was zunächst unmöglich erscheint . In diesem Bereich findet jedoch die Verflüssigung des Gases statt , die Anziehungskräfte der Moleküle ziehen das Gas sozusagen zusammen .
Oberhalb der 647°K gibt es diese Extrema nicht mehr , das heißt , das Gas kann nicht verflüssigt werden , auch nicht bei dem größten Druck oder dem kleinsten Volumen . Die Temperatur , oberhalb der es nicht mehr möglich ist , ein Gas zu verflüssigen , nennt man Boyle -Temperatur oder auch , seltener , kritische Temperatur . Sie beträgt z.B. bei Wasser 647°K oder 374°C .





- 9 -
Um nun den Bereich auf dem Graphen zu bestimmen , in dem die Verflüssigung stattfindet , muß durch einen Punkt auf dem Graphen ,
der zwischen dem Minimum und dem Maximum liegt , eine Gerade ,
die parallel zur x-Achse läuft , gezogen werden . Die beiden Flächen zwischen der Geraden und dem Graphen , die über dem Minimum bzw. unter dem Maximum liegen , müssen zusätzlich exakt gleich groß sein .
Diese Gerade schneidet den Graphen dreimal , nämlich einmal links des Minimums , zwischen den Extrema und rechts des Maximums . Die Schnittpunkte der Geraden mit dem Graphen links und rechts der lokalen Extrema zeigen nun die Grenzen des Phasenüberganges an . Erhöht man den Druck , beginnt das Gas beim Schnittpunkt rechts des Maximums , sich zu verflüssigen und ist beim Schnittpunkt links des Minimums vollständig verflüssigt . Ab hier ist die Steigung der Kurve viel stärker negativ , was bedeutet , daß auch große Druckerhöhungen nur kleine Volumenverkleinerungen bewirken , was auch anschaulich logisch ist , da sich eine Flüssigkeit schwieriger komprimieren läßt als ein Gas .
Die Gerade zeigt auch den Verlauf der Kurve an , die experimentell ermittelt werden würde , da hier das Volumen bei einem bestimmten Druck plötzlich kleiner wird ohne , daß der Druck weiter erhöht wird .
Im Experiment kann es auch den Bereich , in dem mit steigendem Druck das Volumen größer wird ( zwischen den Extrema ) , nicht geben .

 
 

Datenschutz
Top Themen / Analyse
indicator In den letzten Jahren haben sich zwei Erklärungen für den Kugelblitz gebildet:
indicator Energie aus Wasserkraft
indicator Netzgekoppelte Solarstromanlagen
indicator Revolutionen der Technik: die Glasmacherpfeife
indicator Sicherheitsbehälter
indicator Tonträger
indicator Funktionsweise
indicator Luftverunreinigungen
indicator Wirkungsgrad
indicator Woher kommt das viele Kohlendioxid?


Datenschutz
Zum selben thema
icon Transistor
icon Energie
icon Schall
icon Einstein
icon Kernfusion
icon Bomben
icon Strahlung
icon Magnet
icon Kohäsion
icon Welle
icon Diamant
icon Newton
icon Blitz
icon Adhäsion
icon Biomasse
icon Gleitreibung
icon Dichte
icon Watt
icon Entwicklung
icon Otto
icon Laser
icon Reaktor
icon Widerstand
icon Kraft
icon Mikroskope
icon Dynamik
icon Turbine
icon Herstellung
icon Elektrizität
icon Gesetz
icon Strahlung
icon Theorie
icon Kapazität
icon Haftreibung
icon Transformator
icon Wirkung
icon Mechanik
A-Z physik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution