Jeder Meßvorgang erfordert entsprechende Hilfsmittel, die im Einklang mit den Naturgesetzen in zweckmäßiger Weise angeordnet sein müssen. So braucht man in der klassischen Physik Fernrohre und angeschlossene Registriergeräte, um die Bewegung der Planeten um die Sonne zu beobachten. Allein mit Meßgeräten läßt sich aber der Beobachtungsvorgang nicht durchführen. Man braucht dazu vor allem noch Licht, also Photonen, die als Träger der Information über den Ort des Planeten fungieren. Um nämlich über den Bahnverlauf des Planeten etwas zu erfahren, müssen die Meßgeräte die vom Planeten in die Richtung der Erde reflektierten Photonen registrieren. Dabei setzt man voraus, daß die Photonenprozesse keinen Einfluß auf die Planetenbahn haben, der Planet darf also keinen übermäßigen Rückstoß von reflektierten Photonen erhalten.
Innerhalb der klassisch-physikalisch beschreibbaren Phänomene zeigt sich nun, daß dies eine vernünftige Annahme ist. Die klassisch-physikalischen Vorgänge sind unbeeinflußt von den Photonenprozessen, durch die die Messung vermittelt ist, d. h. die Messung ändert den Zustand des Meßobjekts nicht.
Gehen wir zu den entsprechenden Vorgängen in der Quantenphysik über, so besteht die vordergründige Frage darin, ob die Photonen auch in diesem Fall dem Meßprozess als Träger der Information zugeordnet werden könnten, in der Annahme, dass sie die ablaufenden Prozesse nicht stören.
Um zu sehen, ob dieser Störeffekt vorliegt, betrachten wir ein Beispiel aus dem atomaren Bereich, nämlich die Wechselwirkung eines Protons mit einem Elektron. Im Bohrschen Atommodell dreht sich das Elektron, um das Proton herum. Dabei kann das Elektron nur bestimmte, Quantenzustände einnehmen. Im Grundzustand strahlt es nicht, gibt jedoch im angeregten Zustand spontan ein Photon ab, um zu einem energetisch niederen Zustand überzugehen. Man kann nun mit Hilfe eines Spektrometers die Wellenlänge der emittierten Photonen bestimmen und dadurch auf die Energiestufen der Elektronenzustände schließen.
Dieses Vorgehen erweckt auf den ersten Blick den Eindruck, als ob im Vergleich zur klassischen Physik am Meßprozess sich nichts geändert hätte. Beim näheren Hinsehen stellt sich jedoch heraus, daß dem nicht so ist. Das Elektron erhält bei Absorption und Emission von Photonen einen unvermeidbaren Rückstoß, der nach Heisenberg als Ursache der Unschärferelation anzusehen ist, d.h. der Objektzustand wird durch die Messung eindeutig gestört, und dadurch entstehen die Unbestimmtheiten in Ort und Impuls.
Allerdings muß an dieser Stelle bemerkt werden, daß die Photonen nicht wie in der klassischen Physik bloße Anhängsel der ablaufenden Prozesse sind. Das Elektron sendet in der Quantenphysik spontan Photonen aus und wird von ihnen beeinflußt, gleichgültig, ob diese registriert werden oder nicht. Es wäre also ein Fehler, die Photonen gänzlich der Meßabsicht des Experimentators unterzuordnen und zu behaupten, die Messung sei allein schuld für die Unbestimmtheit in der Natur.
Erkennt man die Tatsache an, daß unabhängig vom Meßprozess Photonen spontan absorbiert und emittiert werden, - was für die Physik eine unbestreitbare Tatsache ist - so wird man zwangsläufig darauf geführt, daß die Photonen auch ohne Zutun des Experimentators an den ablaufenden Prozessen wesentlich beteiligt sind.
Es ist zwar richtig, daß die Meßabsicht des Experimentators einen unvermeidbaren Eingriff mit Photonen darstellt. Es ist jedoch nicht richtig, daß dieser Eingriff die Unschärfen in Ort und Impuls ursprünglich erzeugt. Die Unschärfen waren schon vor der Messung da, und zwar hervorgerufen durch spontan absorbierte und emittierte Photonen. Was der Experimentator erzeugt hat, ist nur eine zusätzliche Unschärfe, die ihn allerdings nicht berechtigen darf, zu behaupten, seine Meßgeräte seien allein schuld für die Unbestimmtheit in der Natur.
|