Gammastrahlung tritt gewöhnlich in Verbindung sowohl mit Alpha- als auch mit Betastrahlung auf. Gammastrahlen besitzen keine Ladung oder Masse, ihre Abstrahlung aus dem Kern bewirkt also auch keine Veränderung seiner chemischen Eigenschaften, vielmehr einen bestimmten Verlust an Strahlungsenergie.
Durch einen Alpha- oder Beta-Zerfallsvorgang gerät der verbleibende Kern in einen energetisch angeregten Zustand, der weniger stabil als sein Grundzustand ist. Wenn der Kern schrittweise in seinen energetischen Grundzustand übergeht, wird die dabei frei werdende Energie in Form von elektromagnetischen Wellen, den Gammastrahlen, abgegeben.
Die ersten Gammastrahlen werden fast genau zeitgleich mit den Alpha- bzw. Betastrahlen emittiert. Es gibt auch Fälle reinen Alpha- oder Betazerfalls, wobei keine zusätzliche Gammaemission erfolgt. In diesen Fällen gelangt der Kern gleich beim Zerfall in seinen Grundzustand. Man kennt auch einige Isotope, die nur Gammastrahlung aussenden.
Reine Gammastrahlung tritt auf, wenn ein Isotop in zwei nach außen gleichen, aber energetisch verschiedenen Formen vorliegt. Man spricht hier von Isomeren.
Der Übergang des Isomers mit höherer Energie zum energetisch niedrigeren Zustand wird von Gammastrahlung begleitet. Ein Beispiel für Isomerie ist das Protactinium-234-Isotop, das in zwei unterschiedlichen Energiezuständen vorliegt, wobei Gammaemission den Übergang vom einen zum anderen anzeigt.
Alpha- und Betateilchen werden von ihren Ausgangskernen mit sehr hohen Geschwindigkeiten ausgestoßen. Alphateilchen werden beim Durchgang durch jedwede Materie sehr schnell gebremst und gestoppt, in erster Linie aufgrund der Wechselwirkung der Alphateilchen mit den in jeder Materie vorhandenen Elektronen.
Des weiteren haben die meisten Alphateilchen, die aus derselben Substanz stammen, näherungsweise dieselbe Geschwindigkeit.
Zum Beispiel haben alle Alphateilchen von Polonium 210 eine mittlere Reichweite in Luft von 3,8 Zentimetern, diejenigen von Polonium 212 erreichen unter identischen Bedingungen 8,5 Zentimeter, bevor sie gestoppt werden. Reichweitenmessungen dieser Art werden durchgeführt, um Radio-Isotope zu identifizieren. Betateilchen werden mit erheblich höheren Geschwindigkeiten als Alphateilchen freigesetzt.
Obwohl der Mechanismus, durch den sie gebremst und gestoppt werden, grundsätzlich ähnlich ist, erreichen sie daher eine größere Eindringtiefe in Materie als Alphateilchen.
Anders als Alphateilchen werden Betateilchen mit gänzlich verschiedenen Geschwindigkeiten ausgestrahlt, und Betastrahler müssen von einander anhand der charakteristischen Durchschnitts- und Höchstgeschwindigkeiten ihrer Betateilchen unterschieden werden.
Die Geschwindigkeits-, d. h. Energieverteilung bei der Emission von Betateilchen legte den Schluß nahe, daß am Beta-Zerfallsprozeß ein weiteres masseloses und ungeladenes Teilchen, dem man den Namen Neutrino gegeben hat, beteiligt sein muß.
Jeder Betazerfall geht mit der gleichzeitigen Emission eines Neutrinos einher. Die Reichweite von Gammastrahlung ist um ein Mehrfaches größer als die der Betastrahlung.
Gammastrahlen können mitunter mehrere Zentimeter starke Bleiplatten durchdringen. Alpha- und Betateilchen verursachen bei ihrem Durchgang durch Materie die Bildung von Ionen. Diese Ionisierung ist insbesondere bei gasförmiger Materie leicht zu beobachten.
Gammastrahlen sind ungeladen und können deshalb keine Ionisation in dem Umfang bewirken wie Alpha- oder Betateilchen. Die Ionisation von Betastrahlen beträgt nur bis gegenüber der Wirkung von Alphateilchen pro Zentimeter Wegstrecke in Luft.
Die ionisierende Wirkung von Gammastrahlen beträgt nur von derjenigen der Betastrahlung. Der Geiger-Müller-Zähler und andere Nachweiskammern, die auf dem Ionisationsprinzip basieren, werden benutzt, um die jeweilige Anzahl von Alpha-, Beta- und Gammastrahlen zu messen und mithin die absolute Zerfallsrate der radioaktiven Substanz zu bestimmen.
Die Einheit für die Aktivität einer radioaktiven Substanz ist das Becquerel (ein Becquerel entspricht einem Zerfall pro Sekunde). Siehe biologische Strahlenwirkungen.
Außer den oben beschriebenen Zerfallsarten gibt es noch weitere. Einige Isotope sind in der Lage, Positronen abzustrahlen.
Das Positron ist das Antiteilchen des Elektrons; es hat dieselbe Masse wie das Elektron und trägt eine positive Ladungseinheit.
Die Positronenemission wird als Beta-Zerfallsvorgang eingeordnet und als Positronenzerfall bezeichnet. Beim Positronenzerfall geschieht, vereinfacht ausgedrückt, eine nur im gebundenen Kern mögliche Umwandlung eines Protons in ein Neutron.
Auch hier bleibt die Massenzahl erhalten, die Kernladung wird um eine Einheit verringert. Mit der Emission eines Positrons beim Positronenzerfallsprozeß geht ebenfalls die zusätzliche gleichzeitige Emission eines Neutrinos einher. Eine ähnliche Art der Kernumwandlung geschieht beim sogenannten K-Einfang. Ein Atomelektron aus der innersten, dem Kern am nächsten gelegenen K-Schale wird in den Kern eingefangen und reagiert (stark vereinfacht, aber phänomenologisch zutreffend) mit einem im Kern gebundenen Proton so, daß dieses sich in ein Neutron umwandelt.
Dabei wird wie beim Positronenzerfall ein Neutrino derselben Klasse freigesetzt. Aufgrund seines verschwindend kleinen Wirkungsquerschnitts kann das Neutrino fast nicht nachgewiesen werden, allerdings ist das Verschwinden des Elektrons beobachtbar: In der Elektronenhülle des Atoms tritt anschließend zwangsläufig Röntgenstrahlung auf. Einige Isotope, darunter insbesondere Uran 235 und diverse Isotope der künstlichen Transurane, können in einem Prozeß der spontanen Kernspaltung zerfallen, bei der ein Kern in zwei Bruchstücke, nämlich Kerne leichterer Elemente zerfällt (siehe Kernenergie).
Mitte der achtziger Jahre wurde eine einzigartige Zerfallsart entdeckt, bei der Radiumisotope mit den Massenzahlen 222, 223 und 224 statt der üblichen Alphateilchen Kerne des Kohlenstoffisotops C 14 emittierten.
Eine weitere, äußerst seltene Zerfallsart ist Protonenemission, die mit geringer Wahrscheinlichkeit bei den Isotopen Thulium 147 und Lutetium 151 auftritt.
|