Gewöhnliche Sterne wie die Sonne können nicht ewig bestehen. Die Sonne wird durch eine Balance zwischen der Gravitation und dem Druck in ihrem heißen inneren im Gleichgewicht gehalten.
p0 = G M p0 = G M Gleichgewichtsbedingung für stabile Sterne
R R p0 Druck im Zentrum konstante Dichte
Fiele dieser Druck weg, würde die Sonne im freien Fall in sich zusammenstürzen. Würde anderseits die Gravitation auf magische Weise ausgeschaltet, würde das heiße Innerer ebenso plötzlich explodieren und sich zerstreuen. Auch wenn die Sonne als "ewig" erscheint, ihr Wasserstoffvorrat wird irgendwann zuneige gehen, und das fein abgestimmte Gravitationsgleichgewicht wird zusammenbrechen-der Stern kollabiert. Wenn der Brennstoffvorrat erschöpft ist, durchlaufen die Zentralregionen der Sterne eine ganze Reihe von immer Stärker gebundenen Gravitationsgleichgewichten, unterbrochen von Kontraktionsphasen. Unsere Sonne wird zu einem Weißen Zwerg werden, einem sich langsam abkühlenden Schlackekörper, etwa der Größe der Erde. In diesem Zustand können sie nahezu unendlich lange bleiben, bis auch sie alle Wärme verloren haben. Doch Sterne mit sehr viel größerer Masse kontrahieren weiter, und beenden ihr Dasein als Neutronenstern, auch Pulsar genannt, oder als Schwarze Löcher.
Sterne beginnen ihr Dasein, indem sie sich unter dem Einfluss der Gravitation aus interstellaren Wolken verdichten. Durch dieses Verdichten heizt sich das Gas enorm auf, und führt zu einer noch stärkeren Kontraktion. Jetzt sind verschiedene Umstände maßgebend, was für eine Art von Stern entsteht. Bei einem Stern, unserer Sonne ähnlich, würde die Temperatur im Zentrum so hoch werden, dass in der Zentraleregion Kernfusion einsetzen würde. Der Stern lässt sich dann auf der sogenannten Hauptreihe nieder, der längsten Epoche im Daseins eines Sterns. Die Hauptreihen-Phase dauert so lange, bis der Großteil des Wasserstoffs in der Kernregion verbrannt ist. Ein Prozess, der bei kleinen Sternen Milliarden von Jahren dauert.
Jedoch können weit aus massenreichere Sterne entstehen, die die Masse unserer Sonne um das vielfache übertreffen. Diese sind viel heißer und leuchtkräftiger, da sie ihren Brennstoffvorrat sehr viel schneller verbrauchen. Die Sonne und Sterne wie sie, besitzen genügend Brennstoff, um etwa 10 Milliarden Jahre leuchten zu können. Aber ein Stern von 20 Sonnemassen ist fast 10 000mal leuchtkräftiger als die Sonne, lebt aber nur wenige Millionen Jahre.
Paradoxerweise werden Sterne zunächst leuchtkräftiger, wenn sie ihren nuklearen Brennstoffvorrat verbrauchen. Diese merkwürdige Eigenschaft hängt mit der Tatsache zusammen, dass gravitierende Systeme "sich aufheizen, wenn sie abkühlen". Während sie Kernfusion im Inneren der Sonne voranschreitet, wird immer mehr Wasserstoff in Helium umgewandelt. Wenn sich der Brennstoffvorrat erschöpft, wird die nukleare Energieerzeugung weniger effizient, und die Kernregion schrumpft unter ihrem eigenen Gewicht. Durch diese Kontraktion spüren die Atome in der Kernregion eine größere Gravitationskraft, und die verbliebenen H-Atome bewegen sich schneller. Wird die Bewegung der Atome schneller, steigt auch die Geschwindigkeit der Kernreaktionen an und folglich die Energieabgabe. Dies kann jedoch nur für astronomisch kurzer Zeit stattfinden, denn dann ist auch der letzte Wasserstoffvorrat verbraucht. Um dennoch nicht aus dem Gleichgewicht zu geraten, beginnt der Stern Helium zu fusionieren. Bei diesem Prozess, bläht sich der Stern auf bis zu das 50 Fache der Ursprungsform aus, zu einem sogenannten Roten Riesen. Dieses Stadium kann bis zu einer Milliarde Jahre dauern, je nach dem wie massereich der Stern war. Dann folgt sein Ende, in einer gewaltigen Explosion oder er stirbt ruhig als Weißer Zwerg.
|