Das menschliche Gehör ist ein sehr empfindliches Organ, das dem Menschen ermöglicht, akustische Signale aufzufangen. Dabei legt es eine erstaunliche Empfindlichkeit an den Tag. Denn mit seinem Querschnitt von ca. 0,5cm2 [2] ist es imstande eine Schallwelle mit nur 5*10-17 W [2] Schalleistung bei einer Frequenz 2300Hz zu empfangen. Das ist die kleinste Schalleistung, die das Ohr noch wahrnimmt, wobei dies nur für die Frequenz von 2300Hz gilt, bei der das Ohr die größte Empfindlichkeit von etwa 10-16 W/cm2 [2]. Das entspricht einer Schallstärke von 10000 W/m2. Das reicht aus um Schwingungen in der Luft wahrzunehmen, deren größte Verrückung weniger als ein Atomdurchmesser (10-10m) ist. Wie schon erwähnt, ist das Ohr in der Lage ein Frequenzspektrum von 16-20000Hz zu empfangen, wobei es mit zunehmendem Alter der Person immer kleiner wird. Die Empfindlichkeit des Ohres schrumpft, desto näher die Frequenzen der Wahrnehmungsgrenze kommen. Nicht zu vernachlässigen bei dem menschlichen Hörorgan ist der Orientierungsinn. Denn das Ohr hilft dem Menschen seine Umwelt richtig zu interpretieren. Er kann ziemlich genau bestimmen aus welcher Richtung eine Schallquelle ihn bestrahlt. Das ist möglich, indem er bestimmt welches seiner beiden Ohren das Signal eher empfängt. Dabei kann er bis zu 0,03ms[2] unterscheiden.
Versuch 1:
Das Ziel dieses Versuches ist es, Schallwellen grafisch in einem Oszilloskop darzustellen, um in späteren Versuchen damit Messungen durchzuführen. Dazu wird ein Lautsprecher aufgestellt, der über einen Verstärker an einem CD-Player, der hierbei als eingeschränkter Frequenzgenerator fungiert, angeschlossen wird. Im Abstand von 80cm wird nun ein Studio-Richt-Mikrofon auf gestellt. Ein Richt-Mikrofon wird deshalb genommen um möglichst nur die Schwingungen zu messen auf die man das Mikrofon richtet. Das Mikrofon wird seinerseits über einen Mikrofon-Verstärker an ein Oszilloskop angeschlossen. Im Oszilloskop wird der Sägezahngenerator aktiviert, um auf dem Display eine zeitabhängige Darstellung zu erhalten. Nun werden auf dem CD-Player verschiedene Sinus-Wellen abgespielt, wobei der Schalldruck nicht verändert wird.
Beobachtung:
Das Oszilloskop zeigt in seinem Display eine Sinuskurve mit konstanter Frequenz und Amplitude an. Ändert man die Frequenz am CD-Player, so verändert sich auch die Frequenz der Sinuskurve, jedoch nicht die Amplitude. Nun kann man relativ sicher sein, daß die Aufnahmen beider Frequenzen nicht mit unterschiedlichem Schalldruck, der sich ja als Amplitude auf dem Display ausdrückt, aufgenommen wurde.
Fazit:
Sinus-Schallwellen können durch ein Oszilloskop grafisch als Sinuskurven dargestellt werden, wobei sich der Schalldruck in der Amplitude und die Frequenz in der Streckung ausdrückt.
Versuch 2:
Der Versuchsaufbau ist mit Versuch 1 identisch. Nun spielt man eine Frequenz ab und ändert den Schalldruck. Dies wird bei diesem Versuch nicht mit einer Regelung des Verstärkers erreicht, sondern durch Aufnahmen, die mit verschiedenen Schalldrücken aufgenommen wurden, um so die Ungenauigkeit, die der verwendete Verstärker in der Regelung der Tonabgabe hat, zu vermeiden. Es wird eine Frequenz von 400Hz abgespielt, bei der der Schalldruck dann um 7dB erniedrigt wird.
Beobachtung:
Bei normalem Abspielen der Frequenz von 400Hz kann man ca. 3,2 Kästchen messen. Dabei ist die Kästchenangabe beschränkt auf die verwendeten Einstellungen des Oszilloskops, die während dieses Versuchs natürlich nicht geändert wurden. Es ist nicht Möglich die Ergebnisse dieses Versuches mit nachfolgenden Versuchen oder auch diese Versuche untereinander zu vergleichen. Verringert man nun den Schalldruck um 7dB, so geht die Amplitude im Display auf 1,5 Kästchen zurück. Man kann nun das Verhältnis bilden: , wobei ist, was dem tatsächlichen Anfangsschalldruck entsprechen müßte. Der zweite Schalldruck wäre somit 6,1764dB
Fazit:
Es wird hier kein Fazit ausgedrückt, da zu den Ergebnissen der Versuche auf Seite 15 Stellung genommen wird.
Versuch 3:
Bei diesem Versuch untersucht man nun das Verhalten von Schallwellen, wenn ein Hindernis im Weg steht. Der Abstand zwischen Mikrofon und Lautsprecher sind diesmal 100cm. Zunächst wird der Schalldruck ohne Hindernis gemessen. Danach mit Hindernis, wobei das Brett solange hin und her bewegt wird, bis man an einem Schalldruck-Maxima und an einem Minima angelangt ist. An diesen Punkten wird das Mikrofon nun einmal in der Mitte des Brettes gemessen, einmal 27,5cm nach rechts verschoben und einmal 27,5cm nach links verschoben, was ungefähr den Rändern des Brettes entspricht. Die gemessenen Werte wurden in eine Tabelle eingetragen:
Ohne Hindernis Mit Hindernis - Maximum Mit Hindernis - Minimum Wert des Schalldruckes in Kästchen
1 2 1 Mikrofon 27,5cm rechts
2 2,5 1,4 Mikrofon mittig
1,6 1,5 0,8 Mikrofon 27,5cm links
Man sieht, daß die Werte an manchen Stellen unregelmäßig sind. Wie zum Beispiel, daß, wenn das Mikrofon nach rechts verschoben wird, der Wert anders ist, als wenn es nach links um die gleiche Strecke verschoben wird. Hierbei ist eigentlich ein identischer Wert zu erwarten. Die Abweichungen sind dadurch zu erklären, daß der Raum, in dem die Versuche gemacht wurden, wahrscheinlich gänzlich ungeeignet für akustische Versuche ist. Denn es ist zu vermuten, daß die Schallwellen nicht nur direkt auf das Mikrofon treffen. Sie werden ebenfalls von den Wänden und Tischen reflektiert, die in diesem Fall noch dazu eine sehr glatte Oberfläche hatten, und werden treffen dann wieder auf das Mikrofon. Die Folgen davon sind, trotz der anfänglichen Sinus-Welle, sich überlagernde Wellen, die ein nicht zu überschauendes Wirrwarr an Schalldrücken hinterlassen. Daß jedoch bei dem Versuch zwischen Mikrofon und Lautsprecher während der hin und her Bewegung des Hindernisses Minima und Maxima in der Amplitude auftauchen, läßt eine stehende Welle vermuten. Diese stehende Welle könnte zum Beispiel durch Reflexion an der gegenüberliegenden Wand entstanden sein. Ihre Werte sind nicht eindeutig einer stehenden Welle zuzuordnen, da sich zum Beispiel die Wellen an den Knotenpunkten nicht aufheben, sondern immer noch ein beachtlicher Schalldruck herrscht. Denkt man sich die Störwellen weg, so kann man die Skizze in Abb. 9 als richtige Andeutung ansehen, wobei die Zeichnung nur einen theoretischen Idealfall darstellt.
Versuch 4:
Dieser Versuch dient eigentlich nur dazu, die schlechten Bedingungen des Versuchsraumes zu verdeutlichen. Zu diesem Zweck stellt man das Mikrofon nacheinander in die in Abb.10 dargestellten Positionen. Und zwar einmal direkt vor den Lautsprecher, einmal 200cm links von dieser Position und einmal 200cm rechts von der ersten. Diese drei Positionen werden einmal in 150cm Abstand von dem Lautsprecher durchgespielt und einmal in 300cm Entfernung. (Die seitlich stehenden Mikrofone werden dabei auf den Lautsprecher ausgerichtet und nicht parallel wie in Abb.10.)
Schalldruck in Kästchen
Bei 400Hz 150cm Abstand
(1, 2, 3) 300cm Abstand
(1.1, 2.1, 3.1) Schalldruck in Kästchen
Bei 1000Hz 150cm Abstand
(1, 2, 3) 300cm Abstand
(1.1, 2.1, 3.1)
Mikrofon 1 1 1,3 Mikrofon 1 1 1,1
Mikrofon 2 3 0,8 Mikrofon 2 3 1,7
Mikrofon 3 1,6 1,3 Mikrofon 3 1,4 1,3
Hier sieht man sehr deutlich, daß die Meßwerte höchst unlogisch zu sein scheinen und weit über den Bereich der Meßungenauigkeit hinüber gehen. Man vergleiche beispielsweise die Werte von Mikrofon 1 und 3. Anzunehmen ist ein identischer Wert bei beiden Messungen. Jedoch wird eine Differenz von 0,6 Kästchen gemessen. Oder der Vergleich zwischen 1 und 1.1 bei 400Hz. Der Schalldruck beim weiter entfernten Mikrofon ist um 0,3 Kästchen höher als der Wert des näher plazierten. Dies könnte man zwar mit der Annahme begründen, daß der Abstrahlradius des Lautsprecher dafür verantwortlich ist, was jedoch von dem Meßwerten bei 3 und 3.1 bei 400Hz widerlegt wird. Bei 1000Hz bekommt man ähnlich konfuse Werte. (siehe Tabelle)
Fazit
Dieser Versuch diente in seinen Grundzügen nur der Beweisführung, daß die Meßergebnisse, die nicht den Erwartungen entsprachen, auf die Beschaffenheiten des Versuchsraumes zurückzuführen sind. Dies wird gezeigt, indem Meßergebnisse aufgeführt werden, die ohne die Mitwirkung der störenden Kräfte des Raumes, also der "Störwellen", komplett unlogisch und nicht zu erklären wären.
Kommentar
Diese Facharbeit behandelt den allgemeine Wirkung von Schallwellen auf Körper, bzw. Menschen. Es ist also ein Thema, daß fast die gesamte Akustik abdeckt. Dieses breite Spektrum an Möglichkeiten stellt einem als größtes Problem die Auswahl der Themen die in die Arbeit einfließen sollen. Die Schwierigkeit darin liegt vor allem darin, daß es wahrscheinlich der Wunsch eines jeden ist eine möglichst vollständige Arbeit zu leisten. Dies ist auch der Grund, daß ich mich für eine allgemeine Einführung in die Akustik entschieden habe. Ich meine, dieser Weg bietet die besten Möglichkeiten die Wirkung von Schallwellen zu beschreiben. Auch die durchgeführten Versuch zielen auf eine Veranschaulichung einfacher Prinzipien der Akustik. Doch leider führten sie zu der Erkenntnis, daß es bei Schallwellen komplexe Nebenerscheinungen gibt, die sich zwar nur aus Reflexion, Beugung, Brechung,... zusammensetzen, doch nicht mit den vorhandenen Mitteln exakt bestimmt werden konnten. Jedoch konnten durch die Versuche viele Prinzipien von Schallwellen verdeutlicht werden und das Verständnis, das es möglich machte die einzelnen Themen zu erarbeiten, ist durch die Versuche deutlich gewachsen.
|