Kernstück eines Fusionskraftwerks ist die ringförmige Brennkammer(Abb.7). Sie enthält das Deuterium-Tritium-Plasma. Bis zur Zündung führt eine Startheizung für einige Sekunden eine Leistung von etwa 50 bis 100 MW zu. Ist das Plasma gezündet wird die Heizung wieder abgestellt. Die Fusionneutronen können den Magnetfeldkäfig wegen ihrer Neutralität ungehindert verlassen. Das Plasmagefäß ist von einem lithiumhaltigen Mantel, dem ,,Blanket\" umgeben. Hier erbrüten die auftreffenden Neutronen aus dem Lithium den Fusionsbrennstoff Tritium. Dieses wird dann zusammen mit dem Restbrennstoff der ständig vom Rand des Plasmaraumes entfernt wird, wieder dem Plasma zugeführt. Weiterhin muss natürlich auch ständig Deuterium ins Plasma, sowie Lithium ins Blanket gebracht werden. Die im Plasma freiwerdende Energie wird durch die schnellen Neutronen ins Blanket übertragen und dort mit Hilfe von Wärmetauschern abgeführt. Diese Wärmeenergie wird dann wie bei den üblichen Kraftwerken über Turbinen und Generatoren in elektrische Energie umgewandelt.
Der Reaktor muß natürlich zusätzlich noch von einem Schutzmantel gegen die radioaktive Strahlung des Tritiums umgeben sein. Ein Problem beim Fusionsreaktor ist ebenfalls die Aktivierung des umgebenden Materials durch die freiwerdenden schnellen Neutronen. Um möglichst wenig radioaktive Abfälle zu erzeugen, verwendet man im Reaktor hauptsächlich Materialien mit geringem Aktivierungspotential. Bis jetzt ist man zu keiner entgültigen Lösung zur Erhaltung des Brennstoffkreislaufes gekommen. Ungefähr könnte der Kreislauf so aussehen wie in Abb.9.
In einem solchen Kraftwerk könnten in der Zukunft aus einem Gramm Brennstoff ca. 90 000 kwh erzeugt werden. Dies entspricht ungefähr der Verbrennungswärme von 11 t Kohle.
|