In den letzten 400 Jahren starben mehr als 250 000 Menschen bei Vulkaneruptionen. Aufgrund der ständig wachsenden Bevölkerungsdichte vergrößern sich auch die Gefahren durch Vulkaneruptionen ständig. Die direkten Gefahren dieser Vulkanausbrüche sind Aschenfälle, austretende Gase, Druckwellen und Schlamm- und Lavaströme. Besonders gefährdet sind Gebiete um Vulkane deren Eruptionen durch jahrhundertelange Ruhepausen getrennt sind. Ein Beispiel hierfür ist der berühmte Vesuv bei Neapel. Zur Zeit seiner großen Eruption siedelten ca. eine Million Menschen in dieser, höchst gefährdeten, Zone.
Hauptgefahren bei solchen Eruptionen sind die extrem heißen Gase oder anderen Partikel, die als Dichteströme mit Geschwindigkeiten von 10-100 m/s die Hänge des Vulkans herunterbrausen können. Diese sogenannten pyroklastischen Ströme sind wegen ihrer Geschwindigkeit eben besonders gefährlich (ihretwegen kamen 1902 in Martinique 30 000 Menschen bei der Eruption des Montagne Pelée ums Leben)
Vulkanische Schlammströme können sowohl aus Wasser von Kraterseen als auch von Gletschern bestehen. Die, durch die Vermischung der heißen Vulkanpartikel und des Wassers, entstehenden Schlammstöme sind oft kochendheiß und können ganze Städte überfluten.
Lavaströme sind, ebenso wie die Schlammströme, sehr gefährlich und können auch ganze Städte verschwinden lassen.
Somit ist eines der vordringlichsten Ziele der Vulkanerforschung die Vorhersage von Eruptionen. Dies ist vor allem in dicht besiedelten Gebieten sehr wichtig um eine rechtzeitige Evakuierung zu ermöglichen. Auch für weitere Vulkanforschung wäre der genaue Zeitpunkt sehr hilfreich um weitere Forschungen direkt nach der Eruption betreiben zu können. Vulkaneruptionen sind genau so unvorhersagbar wie das Wetter - sie gelingen nur in den seltensten Fällen und nur bei ausreichend dokumentierten Vulkanen.
Gefahren können durch genaue geologische Untersuchung der Geschichte des Vulkans gefunden werden, aber meist lassen sich dadurch nur Rückschlüsse auf Art, Größe und Wahrscheinlichkeit zukünftiger Eruptionen schließen - jedoch nicht deren Zeitpunkt. Der Zeitpunkt kann nur durch genaue, ununterbrochene Beobachtung geschätzt werden. In den letzten 25 Jahren gab es aber eine enorme Entwicklung in der Vorhersage von Vulkaneruptionen. So wurden manche Ausbrüche bis auf ein paar Tage genau vorhergesagt. Besonders bedeutend sind hierbei Analysen von Erdbeben und Bodendeformationen. Am immer noch aktiven Mt. St. Helens wurden Eruptionen oft auf den Tag, ja, auf die Stunde genau vorhergesagt. Doch wegen der hohen Kosten dieser Eruptionsvorhersage können nur ca. ein Dutzend Vulkane ständig überwacht werden.
Heute unterscheidet man zwei Arten der Vorhersagen:
. Die Prognosen, die nur eine vage Ankündigung einer zukünftigen Eruption geben (in Monaten, Jahren oder Jahrzehnten).
. Und die Vorhersagen, die eine genaue Zeit und Art der Eruption beinhalten. Nur wenn diese Vorhersagen mit größtmöglicher Genauigkeit gemacht werden können, kann die Glaubwürdigkeit bewahrt bleiben. Denn Evakuierungen ohne nachfolgende Eruption sind lähmend und haben meist zur Folge, daß auf die nächste Warnung nicht mehr gehört wird. Somit ist es für die Vulkanforscher ein hartes Stück Arbeit, wenn sie ihre Glaubwürdigkeit behalten wollen.
Durch Vulkaneruptionen können auch gigantische, globale Wirkungen zeigen, wie zum Beispiel das "Jahr ohne Sommer", in dem die nördliche Halbkugel stark abkühlte. Diese Abkühlung war durch eine gigantische Aerosolwolke aus dem indonesischen Tambora-Vulkan bedingt. Die Landwirtschaft wurde in Indonesien so stark in Mitleidenschaft gezogen, daß durch die nachfolgende Hungersnot auf den beiden Inseln Sumbawa und Lombok 80 000 Menschen starben.
Diese Klimaveränderung kann natürlich auch noch weitaus länger anhalten und weit stärkere Auswirkungen zeigen. So, zum Beispiel, die Faunawende an der Grenze Kreide/Tertiär, als die Dinosaurier und viele andere Arten ausstarben. Diese vulkanischen Aerosole ähneln nicht nur dem sauren Regen, sondern stellen auch ein realistisches Naturmodell des nuklearen Winters dar. Diese Aerosole haben eine Zusammensetzung, die ihnen einen jahrelangen Aufenthalt in der Stratosphäre ermöglicht. So z.B. das magmatische Gas SO2. Dieses Gas kann sich in Verbindung mit dem atmosphärischen H2O in kondensierte Schwefelsäurepartikel umwandeln.
|