Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


biologie artikel (Interpretation und charakterisierung)

Solarenergieanlagen-



Allgemein unterscheidet man Solaranlagen zur Stromerzeugung und Anlagen für die Erwärmung des Trink- bzw. Brauchwassers. Beide Typen nutzen die Energie der Sonneneinstrahlung. Das eine System benötigt die Wärme der Sonneneinstrahlung, das andere die Energie der Photonen (Lichtquanten).



Systeme zur Erwärmung des Wassers:

Hier führt man ein Rohr durch einen Sonnenkollektor und pumpt danach Wasser hindurch. Auf Grund der Sonneneinstrahlung wird das Wasser erwärmt, und diese Wärme wird danach durch einen Wärmetauscher an das Trink- bzw. Brauchwassernetz weitergegeben. Es gibt aber auch Systeme, bei denen kein Wärmetaucher verwendet wird. Dort ist der Verbraucher direkt über die Trink- bzw. das Brauchwasserleitungen mit den Kollektor verbunden. Diese Lösung ist allerdings problematisch, da man im Winter etwas Frostschutz in die Leitungen einbringen sollte. Glykol ist bekanntlich ein Bestandteil des Frostschutzes, und das ist für den Menschen giftig.





Im Wesentlichen unterscheidet man 3 Systeme:

. Systeme ohne Umlauf: Hier wird das Wasser unter dem Kollektor nicht bewegt, die Wärme wird mittels eines Wärmetauschers an das Brauchwassernetz weitergegeben.
. Systeme mit Schwerkraftumlauf: Hier wird das Wasser durch die Gesetze der Schwerkraft in Kreislauf gehalten. Dies geschieht meistens mit Höhenunterschieden zwischen den einzelnen Elementen. Hier kann man zusätzlich noch variieren, zwischen einem System mit oder ohne Wärmetauscher.
. Systeme mit Zwangsumlauf: Hier wird das Wasser durch eine Pumpe in Bewegung gehalten. Man kann wiederum wählen, zwischen den Systemen mit oder ohne Wärmetauscher.


Bei den Kollektoren gibt es verschiedenste Bauweisen. Hier sollte man den für sein Haus am günstigsten Kollektor auswählen.
Ein praktisches System mit Zwangsumlauf kann folgendermaßen aussehen: (Abb. 1)







Anwendungsbereiche:

. In Wohnhausanlagen

. In Bürogebäuden


Vorteile:

. Man spart Heizkosten


Nachteile:

. Teure Anschaffung
. Wetterabhängig

. Im Winter Frostgefahr


Systeme zur Stromerzeugung:

Grundsätzliche Wirkungsweise:

Durch einen dotierten Halbleiter wie zum Beispiel Silizium, erhält man eine "p - dotierte" Schicht mit einem Überschuß an freien positiven Ladungsträgern und eine "n - dotierte" Schicht mit negativen Ladungsträgern und eine n-/p-Grenzschicht. Nun gibt es in dem Kristallgitter eine Fehlstelle, ein sogenanntes Loch. Dieses hat eine positive Ladung, die der Ladungsgröße eines Elektrons entspricht. Damit wirkt es auf ein Elektron ein, was dazu führt, daß sich dieses aus seiner Bindung löst und das Loch besetzt. Dadurch entsteht wieder ein Loch, welches seinerseits auf ein Elektron wirkt. Dadurch verlässt ein weiteres Elektron seinen alten Platz, besetzt das Loch und hinterläßt eine Fehlstelle. Im Prinzip ein Kreislauf ohne Ende. Dadurch entsteht an der Trennschicht ein elektrisches Feld.
Treffen nun Photonen (Lichtquanten  massenlose Elementarteilchen) auf die dotierte Silizium - Schicht, werden durch die Energie der Photonen, aus dem Atomverband des Kristalls, Elektronen gelöst. Diese werden durch das elektrische Feld sortiert. Es entsteht eine Potentialdifferenz und damit an den äußeren Anschlußkontakten auch eine Spannung, so daß bei Anschluß eines Verbrauchers ein Strom fließen kann (siehe Abb.2).


Solarmodule:
Die derzeit üblichen kristallinen Solarzellen von 100 x 100 mm Größe geben bei voller Einstrahlung eine Leistung von cirka 1,5 Watt bei einem Strom von etwa 2,5A ab. Um unter diesen Bedingungen zu technisch nutzbaren Leistungen zu gelangen und um das hochempfindliche Silizium - Plättchen zu schützen, ist es notwendig mehrere Solarzellen zu einem Solarmodul zu verschalten. Diese haben meist eine Vorderabdeckung aus Glas, eine Rückseitenabdeckung und einen Rahmen. Diese Außenbauteile sollen das Solarmodul vor extremer Witterung und Beschädigung beschützen.
Solche Module bestehen meist aus zehn bis 40 einzelnen Zellen. Je nach Spannungs- und Strombedarf lassen sich die Zellen des Moduls in Reihe (Spannungen addieren sich; Stromstärke ist konstant) oder parallel (Stromstärken addieren sich; Spannung ist konstant) schalten.
Die maximale Leistung von Solarzellen und -modulen, wird in Wattpeak (Wp) angegeben. Um diese zu erreichen, müssen aber Bedingungen herrschen, die eher selten vorkommen. Nämlich eine Einstrahlung von 1000W/m², eine Zellentemperatur von 25C° und ein Lichtspektrum mit der Stärke 1,5.
Allgemein lässt sich sagen, dass die Leistung einer Solarzelle stark abhängig von der Temperatur der Zelle ist. Denn pro Grad Temperaturerhöhung sinkt die Spannung um mehr als 0,5%, der Strom steigt um ca. 0,05%. Für die Leistung wirkt sich gerade die Spannungsabhängigkeit stark aus, was bedeutet, dass die Leistung auch um ca. 0,5% sinkt, wenn die Zelle um 1 Grad wärmer wird.
Mehrere zusammengeschaltete Module ergänzen sich zu einem PV - Generator (Solargenerator).


Ein im Haushalt gebräuchliches Stromnetz mit PV Generator sieht zum Beispiel so aus:


Abb. 3: Der Wechselrichter wird dazu benötigt, um den von der Solarzelle erzeugten Gleichstrom in netzfähigen Wechselstrom zu verwandeln.






Anwendungsbereiche:

. In Wohnhausanlagen

. In Bürogebäuden

. In Fahrzeugen


Vorteile:

. Umweltfreundliche Energiegewinnung
. Man ist von keinem Stromnetzbetreiber abhängig
. Man kann in das öffentliche Netz Strom einspeisen und bekommt dafür Geld


Nachteile:
. Im Winter ist die Sonneneinstrahlung nicht optimal
. Teuer in der Anschaffung

 
 

Datenschutz
Top Themen / Analyse
Arrow EHEC
Arrow Stress--
Arrow Energydrinks-
Arrow Die Förderung
Arrow Bakterien - -
Arrow Die Honigproduktion
Arrow Hanta Virus
Arrow Der Tropische Regenwald
Arrow Photosynthese ---
Arrow Was ist Biologie?


Datenschutz
Zum selben thema
icon Verdauung
icon Drogen
icon Pubertät
icon Enzyme
icon Erbkrankheiten
icon Rauchen
icon Luft
icon Immunsystem
icon Parasit
icon Verdauung
icon Gedächtnis
icon Ökosystem
icon Genetik
icon Biotop
icon Radioaktivität
icon Hygiene
icon Gehirn
icon Tier
icon Botanik
icon Pflanzen
icon Gen
icon Chromosomen
icon Lurche
icon Depression
icon Dinosaur
icon Infektion
icon Auge
icon Allergie
icon Alkohol
icon Insekte
icon Herz
icon Proteine
icon Wasser
icon Ozon
icon DNA
icon Ökologie
icon Spinnen
icon Blut
icon Klonen
icon Hepatitis
icon Fotosynthese
icon Krebs
icon Hormone
icon Schmerz
icon Fortpflanzung
icon Röteln
icon Mutationen
icon Diabetes
icon Antibiotika
icon Eiweißsynthese
icon Körper
A-Z biologie artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution