Eine weitere häufig benutzte Zustandsgleichung zur Beschreibung des Verhaltens realer Gase ist die CLAUSIUSsche Virialgleichung . Sie ist im Prinzip ebenfalls eine erweiterte Zustandsgleichung der idealen Gase . Sie lautet :
....
Die Koeffizienten B,C,D ... nennt man Virialkoeffizienten , die für jedes Gas unterschiedlich sind . Sie sind von der Temperatur abhängig . Zur Vereinfachung wird häufig beim linearen Term abgebrochen :
- 13 -
Wird die Zustandsgleichung nicht nach dem Druck , sondern nach der Dichte entwickelt , sieht die Virialentwicklung folgendermaßen aus :
...
(aus : Greiner , Neise , Stöcker : Thermodynamik und statistische Mechanik , S.18)
Natürlich können alle Gleichungen auch für eine beliebige Teilchenzahl und nicht unbedingt für ein mol Gas aufgestellt werden , am häufigsten wird jedoch diese Menge betrachtet . Die ideale Zustandsgleichung lautet dann z.B. für N Teilchen :
(y)
Die Konstante k ist die BOLTZMANNsche Proportionalitätskonstante , deren Wert beträgt . Bei Teilchen , also gerade einem mol Teilchen , ergibt sich für die Gaskonstante R , womit die Gleichung wieder lautet . Ebenso läßt sich auch die van-der-Waalssche Gleichung für N mol anwenden :
(z)
(siehe hierzu auch : Greiner,Neise,Stöcker:Thermodyn. Und statist. Mechanik ,S.8,18,19)
Es gibt auch eine vereinfachte Form der van-der-Waals-Gleichung , bei der nach Auflösen der Klammern das Glied vernachlässigt wird , da es in vielen Fällen , wenn man für V= setzt , um den Wert 1 liegt , und bei ebenfalls für V nach der idealen Zustandsgleichung eingesetzt wird . Dann erhält man :
(A)
(siehe : BRDIÈKA : Grundlagen der physikal. Chemie , S. 247 )
- 14 -
Vergleicht man diese Gleichung mit der CLAUSIUSschen Virialentwicklung , die beim linearen Term abgebrochen wurde , so sieht man , daß
sein muß . Diese Gleichung (A) zeigt auch , wie stark der Term bei realen Gasen vom Wert RT bei idealen Gasen abweicht . Bei niedrigen Temperaturen ist der Term >b , so daß mit steigendem Druck abnimmt , bei hohen Temperaturen ist b> , vergrößert sich also mit steigendem Druck . Die Temperatur , bei der ist , ist die kritische Temperatur , oder auch Boyle-Temperatur .
(vgl. hierzu : BRDIÇKA , Grundlagen der physikal. Chemie , S.247)
Abschließend hier noch einmal alle wichtigen Gleichungen und Beziehungen :
Die ideale Zustandsgleichung für ein mol :
und für n mol :
wobei , je nach verwendeten Einheiten , z.B.
ist .
Die van-der-Waalssche Zustandsgleichung der realen Gase lautet für ein mol :
oder für N Teilchen :
- 15 -
Die van-der-Waals-Gleichung nach p aufgelöst , ergibt die Funktion
,
deren Graphen das p-V-Diagramm der realen Gase zeigen .
Die Konstanten a , b und R stehen folgendermaßen mit den kritischen Werten und in Zusammenhang :
; ;
und
; ;
Die Clausiussche Virialgleichung lautet , wenn sie nach Drücken entwickelt wird :
....
Sie wird der Einfachheit halber jedoch häufig beim linearen Glied abgebrochen . Im Vergleich mit der vereinfachten van-der-Waalsschen Gleichung sieht man , daß der Koeffizient B gleich
sein muß .
|