Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


physik artikel (Interpretation und charakterisierung)

Weitere zustandsgleichungen


1. Atom
2. Motor

Eine weitere häufig benutzte Zustandsgleichung zur Beschreibung des Verhaltens realer Gase ist die CLAUSIUSsche Virialgleichung . Sie ist im Prinzip ebenfalls eine erweiterte Zustandsgleichung der idealen Gase . Sie lautet :
....
Die Koeffizienten B,C,D ... nennt man Virialkoeffizienten , die für jedes Gas unterschiedlich sind . Sie sind von der Temperatur abhängig . Zur Vereinfachung wird häufig beim linearen Term abgebrochen :




- 13 -
Wird die Zustandsgleichung nicht nach dem Druck , sondern nach der Dichte entwickelt , sieht die Virialentwicklung folgendermaßen aus :

...
(aus : Greiner , Neise , Stöcker : Thermodynamik und statistische Mechanik , S.18)

Natürlich können alle Gleichungen auch für eine beliebige Teilchenzahl und nicht unbedingt für ein mol Gas aufgestellt werden , am häufigsten wird jedoch diese Menge betrachtet . Die ideale Zustandsgleichung lautet dann z.B. für N Teilchen :

(y)
Die Konstante k ist die BOLTZMANNsche Proportionalitätskonstante , deren Wert beträgt . Bei Teilchen , also gerade einem mol Teilchen , ergibt sich für die Gaskonstante R , womit die Gleichung wieder lautet . Ebenso läßt sich auch die van-der-Waalssche Gleichung für N mol anwenden :

(z)
(siehe hierzu auch : Greiner,Neise,Stöcker:Thermodyn. Und statist. Mechanik ,S.8,18,19)

Es gibt auch eine vereinfachte Form der van-der-Waals-Gleichung , bei der nach Auflösen der Klammern das Glied vernachlässigt wird , da es in vielen Fällen , wenn man für V= setzt , um den Wert 1 liegt , und bei ebenfalls für V nach der idealen Zustandsgleichung eingesetzt wird . Dann erhält man :

(A)
(siehe : BRDIÈKA : Grundlagen der physikal. Chemie , S. 247 )

- 14 -


Vergleicht man diese Gleichung mit der CLAUSIUSschen Virialentwicklung , die beim linearen Term abgebrochen wurde , so sieht man , daß

sein muß . Diese Gleichung (A) zeigt auch , wie stark der Term bei realen Gasen vom Wert RT bei idealen Gasen abweicht . Bei niedrigen Temperaturen ist der Term >b , so daß mit steigendem Druck abnimmt , bei hohen Temperaturen ist b> , vergrößert sich also mit steigendem Druck . Die Temperatur , bei der ist , ist die kritische Temperatur , oder auch Boyle-Temperatur .
(vgl. hierzu : BRDIÇKA , Grundlagen der physikal. Chemie , S.247)


Abschließend hier noch einmal alle wichtigen Gleichungen und Beziehungen :
Die ideale Zustandsgleichung für ein mol :

und für n mol :

wobei , je nach verwendeten Einheiten , z.B.

ist .
Die van-der-Waalssche Zustandsgleichung der realen Gase lautet für ein mol :


oder für N Teilchen :




- 15 -


Die van-der-Waals-Gleichung nach p aufgelöst , ergibt die Funktion
,
deren Graphen das p-V-Diagramm der realen Gase zeigen .
Die Konstanten a , b und R stehen folgendermaßen mit den kritischen Werten und in Zusammenhang :

; ;

und

; ;
Die Clausiussche Virialgleichung lautet , wenn sie nach Drücken entwickelt wird :

....
Sie wird der Einfachheit halber jedoch häufig beim linearen Glied abgebrochen . Im Vergleich mit der vereinfachten van-der-Waalsschen Gleichung sieht man , daß der Koeffizient B gleich
sein muß .

 
 

Datenschutz
Top Themen / Analyse
indicator Wissenschaftliche Satelliten
indicator Atomkraft
indicator Meteoriten -
indicator Der "Photoeffekt"
indicator Wasserstoffbombe
indicator The Importance of Mercury
indicator Karthodenstrahlröhren - Funktionsweise
indicator Ist die Dunkle Materie reell oder liegt ein Fehler in den Theorien vor?
indicator Oszilloskop
indicator Eine französische Idee und ihre Weiterentwicklung


Datenschutz
Zum selben thema
icon Transistor
icon Energie
icon Schall
icon Einstein
icon Kernfusion
icon Bomben
icon Strahlung
icon Magnet
icon Kohäsion
icon Welle
icon Diamant
icon Newton
icon Blitz
icon Adhäsion
icon Biomasse
icon Gleitreibung
icon Dichte
icon Watt
icon Entwicklung
icon Otto
icon Laser
icon Reaktor
icon Widerstand
icon Kraft
icon Mikroskope
icon Dynamik
icon Turbine
icon Herstellung
icon Elektrizität
icon Gesetz
icon Strahlung
icon Theorie
icon Kapazität
icon Haftreibung
icon Transformator
icon Wirkung
icon Mechanik
A-Z physik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution