Aus der Elektrizitätslehre ist bekannt, dass Körper mit gleicher elektrischer Ladung, sich von einander Abstoßen. Das gilt auch für Protonen. Andererseits weiß man, dass im Atomkern unter Umständen bis zu hundert Protonen sehr eng beieinander liegen, in einem Raum von einem billionstel Millimeter Durchmesser. Da die elektrischen Abstoßungskräfte mit dem Quadrat der Abstandsverringerung zunehmen, müssen sie in dieser Enge sehr groß sein. Folglich muss es eine zweite wesentlich stärkere Kraft geben, die die Atomkerne zusammen hält. Diese so genannte Kernkraft besitzt eine in der Natur einzigartige Eigenschaft: Sie verändert sich mit der dritten Potenz der Entfernung. Sie wirkt darum praktisch nur auf kurze Entfernungen innerhalb des Atomkerns, dort aber umso kräftiger. Auf der anderen Seite ist sie nicht dazu im Stande auf die Anziehungskräfte, zwischen Atomkern und den um ihn kreisenden Elektronen, Einfluss zunehmen.
Was muss also passieren, damit zwei Deuteronen miteinander verschmelzen? Zunächst müssen die elektrostatischen Abwehrkräfte überwunden werden. Erst wenn es gelingt, die beiden Atomkerne sehr nahe zusammenzubringen, schlägt die gegenseitige Abstoßung plötzlich in Anziehung um. Ein klein wenig Masse verwandelt sich in Energie und bewirkt, dass der neue Kern und die übriggebliebenen Nukleonen mit einer Relativgeschwindigkeit von 30 000 km/h, einem Zehntel der Lichtgeschwindigkeit, auseinander fliegen. In diesem Moment werden mehr Kräfte frei, als ursprünglich bei der Überwindung der Abstoßung aufgewendet werden mussten. Bei diesem Phänomen versucht jetzt die Wissenschaft anzusetzen und es, in diesem Fall friedlich, zu nutzen. Jetzt Stellt man sich natürlich die Fragen:
1. Wie gibt man den Kernen die nötige Geschwindigkeit, also die nötige kinetische Energie, damit sie ihre gegenseitigen Abstoßungskräfte überwinden und miteinander verschmelzen können?
2. Wie soll man die dabei entstehende Energie nutzen?
|