3.1 Punktförmige Belichtung mit dem Laserstrahl
3.1.1 SLA- Verfahren
Die Stereolithographie- Anlage, wie die Abbildung 3 zeigt, besteht aus einem UV- Laser, einem optischen Scanner, einem Mikroprozessor zur Systemsteuerung, der Betriebssoftware und dem Photopolymerbehälter einschließlich der Arbeitsplattform in der Kammer für den Lichthärteprozeß.
Abbildung 3: Elemente einer SLA
3.1.1.1 Laser
Für die Aufgabe, das flüssige Kunstharz zu härten, ist das Laserlicht prädestiniert. Als Laser werden Helium- Cadmium- Laser oder Argon- Ionen- Laser verwendet. Der Helium- Cadmium- Laser hat als Ultraviolettlicht (Wellenlänge 400 nm) einen besonders hohen Wirkungsgrad gerade in dem für die verwendeten Polymere optimalen Wellenlängenbereich. Die Scangeschwindigkeit der Laser lassen in der Stereolitthographie bis zu 10 m/s zu.
Abbildung 4: Prinzip eines Helium- Cadmium- Lasers
3.1.1.2 Strahlenführungssystem
Das optische Strahlenführungssystem besteht aus einer Blende, zwei Umlenkspiegeln, die im Winkel von 90 Grad zueinander stehen, dazwischen einen Strahlenexpander, der den Lichtstrahl verstärkt und einem Scanner, der als dynamischer Spiegel den Laserstrahl in X- und Y- Richtung führt. Durch ein optisches Fenster ist das Strahlenführungssystem von der Prozesskammer getrennt.
Abbildung 5: optische Strahlenführung einer SLA
3.1.1.3 Prozeßkammer
In der Prozeßkammer befindet sich der Polymerbehälter, das Beschichtungssystem, die Niveaukontrolle und die Z- gesteuerte Plattform. Während der Fertigung eines Modells überwacht die Steuerung den X- Y- Scanner, die Bewegung der Plattform in Z- Richtung, das Beschichtungssystem und die Niveaukontroll- Einrichtung.
Zu Beginn des Aufbaues eines Modells wird die Plattform mit der Lochplatte unter die Oberfläche des flüssigen Harzes positioniert. Der X- Y- Laserstrahl bildet dann die Konturen des ersten Querschnitts entsprechend dem im Slice- Computer generierten Vektormuster im flüssigen Monomer, das unter Einfluß des UV- Laserlichtes auspolymerisiert. Das wirkt sich an der Oberfläche so aus, daß kleine Kreisflächen belichtet und in Form von auf der Spitze stehenden Kegeln photopolymerisiert werden, und somit mit der darunterliegenden Schicht verbunden wird.
Nach Aushärten des ersten Querschnitts wird die Trägerplatte um die gewählte Schichtdicke (0,05 - 0,07) abgesenkt. Mit einem Rakel (Beschichtungssystem) wird die Oberfläche des flüssigen Monomers egalisiert und der nächste Querschnitt durch den Laserstrahl abgebildet. Auf diese Weise wird das Modell von unten nach oben, Schicht für Schicht, aufgebaut.
Ist der letzte Querschnitt hergestellt, wird das Modell samt Trägerplatte entnommen und für etwa 90 Minuten in den Nachvernetzungsschrank (UV- Ofen) zum vollständigen Aushärten gebracht. Nach der Abnahme von der Lochplatte und Entfernen der Stützkonstruktion ist das Modell fertig. Je nach Anforderung können noch verschiedene mechanische Nachbearbeitungen folgen, bis hin zum Polieren und Lackieren.
Mit Hilfe der Stereolithographie kann von einem CAD- konstruierten Teil nicht nur ein einziges Modellstück gebaut werden, es können, in Abhängigkeit von der Teilgröße und der Trägerplattform, mehrere in einem Arbeitsgang hergestellt werden. Es sind auch - ohne Änderung der CAD- Files Vergrößerungen oder Verkleinerungen sowie Anfertigungen von spiegelbildlichen Teilen möglich.
Abbildung 6: Prinzip der Stereolithographie
3.1.2 Soup- Verfahren
Das von der Mitsubishi- Tochter Cmet hergestellte RP- System Soup (Solid Optical UV- Plotter) arbeitet auch mit punktueller Belichtung, allerdings mit dem wesentlichen Unterschied in der Scanmethode, daß der Laserstrahl von einem X- Y- Plotter geführt wird. Diese Methode ist zwar langsamer, hat jedoch den Vorteil, daß der Laserstrahl an allen Orten senkrecht auf das Photopolymer trifft und keine zusätzlich Maßnahme für eine Nachfokussierung infolge der Strahlauslenkung ergriffen werden muß.
3.1.3 Colamm- Verfahren
Dieses von Mitsui entwickelte Colamm- Verfahren (Computer Operated Laser Active Modelling Machine) zeigt verfahrenstechnisch eine interessante Variante: Der mit einem Scannerspiegel gesteuerte HeCd- Laser belichtet das Harz von unten durch eine UV- transmittierende Scheibe hindurch. Somit können Stützkonstruktionen für das Bauteil weitgehend entfallen.
3.2 Flächige Belichtung mit Masken
3.2.1 LSI- Verfahren
(Light- Sculpforming- Inc.)
Wird die Photopolymer- Oberfläche durch paralleles UV- Licht belichtet, so erfolgt das Aushärten einer ganzen Schicht gleichzeitig, und der aufwendige Prozeß der X- Y- Steuerung des Laserstrahls kann entfallen. Voraussetzung dafür ist allerdings die phototechnische Herstellung einer Maske für jede Schicht des aufzubauenden Formteils. Diese Maske kann unter der Verwendung der CAD- Geometriedaten nach dem Funktionsprinzip eines Photokopierers erzeugt werden.
Abbildung 7: LSI- Verfahren
3.2.2 SGC- Verfahren
Bei den sogenannten Solid- Ground Curling- Verfahren (Soliderverfahren) wird jede
UV- lichtgehärtete Schicht umgehend mit Wachs eingebettet, das nach Beendigung des Formbildungsprozesses herausgelöst wird. Auf diese Weise ergibt sich eine Stabilisierung der erzeugten Formteilbereiche, und es kann auf umständliche Stützkonstruktionen verzichtet werden. Es können auch problemlos ineinander verschachtelte und zueinander bewegliche Formteilelemente erzeugt werden.
Abbildung 8: Solider- Verfahren
3.3 Übersicht über Verfahren zur Prototypenherstellung
|