Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


physik artikel (Interpretation und charakterisierung)

Spektralanalyse


1. Atom
2. Motor

Licht besteht aus unterschiedlichsten Wellen bzw. Strahlungen, von denen nur ein kleiner Teil der Bereich des sichtbaren weißen Lichtes ist.
Nach Wellenlänge geordnet (längste Wellenlänge zuerst) wird das gesamte elektromagnetische Spektrum folgendermaßen unterteilt. Überschneidungen der einzelnen Bereiche sind möglich:
technischer Wechselstrom um 107 Meter
tonfrequenter Wechselstrom um 105 Meter
Langwellen 30 Kilometer bis 600 Meter

Mittelwellen 600 bis 200 Meter
Kurzwellen 200 bis 10 Meter

Ultrakurzwellen 10 bis 1 Meter
kosmische Radiowellen und Mikrowellen 1 Meter bis 0,1 Millimeter
Infrarotstrahlung 1,5 Millimeter bis 0,75 Mikrometer
sichtbares Spektrum 0,8 bis 0,4 Mikrometer
Ultraviolettstrahlung 400 bis 3 Nanometer
Röntgenstrahlung 10-8 bis 10-15 Meter

Gammastrahlung 10-10 bis 10-15 Meter
sekundäre Höhenstrahlung 10-15 bis 10-17 Meter

Schickt man nun einen weißen Lichtstrahl des sichtbaren Lichtes (0,8 bis 0,4 Mikrometer) durch ein Glasprisma wird dieser 2 mal gebrochen und das sichtbare Licht wird in seine Spektralfarben aufgefächert.

Die Zerlegung des Lichts in die Farben des Spektrums hatte bereits Newton entdeckt. Mit einem dreieckigen Prisma wird ein zuvor durch eine Sammellinse gebündelter Lichtstrahl in seine einzelnen Wellenlängen zerlegt. Das Ergebnis ist eine Abfolge von Farben - von Rot und Orange am einen Ende über Gelb, Grün und Blau bis zu Indigo und Violett am anderen Ende. Joseph von Frauenhofer wollte feststellen ob sich in dem Regenbogenmuster, das die Lichtbrechung erzeugte, eventuelle Fehler seines Linsenglases zeigten. Zunächst hatte er mit künstlichem Licht gearbeitet (dem gelben Licht das bei der Erwärmung von Natrium entsteht). Dabei hatte er bemerkt, daß das Licht einer solchen Lampe bei der Brechung ein oder zwei rätselhafte Lücken zeigte - dunkle Linien, an denen die kontinuierliche Ausbreitung der Farben jedesmal, wenn er das Lampenlicht zerlegte, an ganz bestimmten Stellen unterbrochen wurde. Allerdings erzeugte das Natriumlicht nur einen Teil des Spektrums, daher wollte Fraunhofer das ganze Spektrum prüfen, um herauszufinden ob die Linien auch im Sonnenspektrum auftreten. Unter den überaus sorgfältigen Bedingungen, für die er bei der Überprüfung seiner Linsen sorgte, konnte er nicht nur den Regenbogeneffekt sehen, den er durch die Lichtbrechung hervorrief, sondern er bemerkte auch eine große Anzahl deutlich erkennbarer Linien quer über das ganze Spektrum. Es gab einige tiefdunkle und einige andere, die heller und daher nicht ganz so gut sichtbar waren. Unter Fraunhofers Versuchsbedingungen waren sie zweifelsfrei sichtbar.
Bald darauf erhitzte er andere chemische Stoffe und zerlegte das von ihnen erzeugte Licht. Abermals zeigten sich Linien oder Lücken, doch diesmal an anderen Stellen.

Zwar wußte er nicht wie sie zustande kamen, aber jeder chemische Stoff produzierte ein charakteristisches Linienmuster, das sich von dem der anderen unterschied. Ein bißchen glichen sie den Strichcodes, die heute in Kaufhäusern für die Preisauszeichnung dienen; jedes Muster aus hellen und dunklen Streifen im Farbspektrum war eine Art Lichtfingerabdruck, durch den man das betreffende chemische Element bei Erwärmung identifizieren vermag - was Fraunhofer allerdings noch nicht erkannte. Im Augenblick wußte er lediglich, daß er diese Linien gesehen hatte und daß er sie im Interesse der Wissenschaft veröffentlichen konnte.
Heute wissen wir, daß es sich bei diesen Linien in der Tat um Stellen im Spektrum oder bestimmte Wellenlängen des Lichts handelt, bei denen jedes Element Licht absorbiert - und dadurch Abwesenheit von Licht, also eine dunkle Linie erzeugt - oder eine leuchtende Farbe, also eine zusätzliche Aufhellung produziert. Das hängt mit dem subatomaren der Elemente und der Art und Weise zusammen wie sie auf Energiezufuhr reagieren.
Man kann diese Vorgänge am besten verstehen, wenn man die Emission ("aussenden") und Absorption ("verschlucken") von Licht an einem Modell des einfachsten Atoms, dem Wasserstoff, erklärt. Hier umkreist ein einzelnes elektrisch negativ geladenes Elektron den aus einem positiven Proton bestehenden Kern. Dem Elektron stehen zahlreiche, aber ganz bestimmte Bahnen offen, die ganz bestimmten Energiestufen entsprechen. Die innerste Bahn 1 (Grundzustand) ist die energieärmste. Soll eine äußere Bahn erreicht werden, so muß das Elektron dazu angeregt werden, das heißt es muß Energie von außen zugeführt werden. Für den Sprung von Bahn 1 auf Bahn 2 ist zum Beispiel ein Energiebetrag von 10,19 e.V. (Elektronenvolt) erforderlich. Wobei 1 e.V. die Energie ist, die ein Elektron gewinnt, wenn es ein Feld mit einer Spannungsdifferenz von 1 Volt durchläuft. Für einen Sprung von Bahn 1 auf die Bahn 3 sind 12,07 e.V. notwendig. Bei einer Zufuhr von 13,595 e.V. oder mehr wird das Elektron vom Atomkern völlig getrennt (Ionisation).

Umgekehrt wird bei Elektronensprüngen von einer äußeren auf eine innere Bahn ein jeweils ganz bestimmter Energiebetrag in Form einer Strahlung bestimmter Wellenlänge frei. Es entsteht also eine Emissionslinie, also eine helle Linie im Spektrum.
Wenn wir nun diese Linien identifizieren, können wir sagen, welche chemischen Elemente in einer Lichtquelle vorhanden sind.
Sonnen und Sternspektren zeigen auf dem kontinuierlichen Farbenhintergrund (Kontinuum) eben auch dunkle (selten hellere) Linien. Die auffälligsten dunklen Linien wurden erstmals von W.H. Wollaston 1802 im Sonnenspektrum entdeckt und von J. Fraunhofer 1814 mit lateinischen Buchstaben bezeichnet. Ihre Bedeutung wurde erst klar, als R.W.Bunsen und G.R. Kirchhoff 1859 die Grundlagen der Spektralanalyse aus Laboratoriumasversuchen ermittelten:
- Ein glühender, fester oder flüssiger Körper sowie Gase unter sehr hohem Druck und hoher Temperatur erzeugen ein zusammenhängendes, kontinuierliches Spektrum ohne Linien.
- Leuchtende Gase unter geringerem Druck oder niedriger Temperatur zeigen einzelne helle Emissionslinien. Jedes chemische Element erzeugt seine eigenen Linienserien. Das Emissionsspektrum irgendwelcher leuchtender Gase verrät also deren chemische Zusammensetzung.
- Durchläuft das Licht eines Körpers, das für sich allein genommen ein kontinuierliches Spektrum ergibt, ein (kühleres) Gas, so zeigen sich auf dem Kontinuum genau bei denjenigen Wellenlängen dunkle Linien (Absorptionslinien, Fraunhofer´sche Linien), bei denen das durchstrahlte Gas im alleinigen Leuchtzustand Emissionslinien erzeugen würde. Dies gilt auch für die meisten Sterne und die Sonne, wo die von tieferen Zonen stammenden Lichtstrahlen äußere, kühle Randschichten durchlaufen und in dieser "umkehrenden Schicht" die Fraunhofer-Linien entstehen.

Im übrigen war Fraunhofer nicht der einzige, dem die Bedeutung seiner Entdeckung zunächst verschlossen blieb. Erst um 1880 fand William Huggins heraus, daß die Fraunhofer´schen Linien die Fingerabdrücke der Elemente sind. Noch wichtiger: Ihm wurde klar, daß sich mit ihrer Hilfe herausfinden ließ, woraus Sonne und Sterne bestehen.

Als er das Licht der Sonne zerlegte und es mit dem Licht eines Sterns verglich, erkannte er nicht nur, daß beide Lichter mit identischen Fingerabdrücken abstrahlten, sondern auch, daß in beiden die einander überlagernden Fingerabdrücke von Helium und Wasserstoff vorhanden sind. Daraus ergab sich unweigerlich der Schluß, daß die Sterne und die Sonne in ähnlicher Weise aus Wasserstoff und Helium aufgebaut sind und diese Stoffe durch einen Verbrennungsvorgang oder eine ähnliche Reaktion veranlassen, Wärme und Licht abzustrahlen - wie Riesenversionen von Fraunhofers Lampen.
Das war an sich schon eine Erkenntnis von hohem wissenschaftlichem Wert, aber ihre philosophische Bedeutung lag in dem Beweis, daß sich die Sonne und die Sterne nicht voneinander unterscheiden. Mit anderen Worten: Huggins hatte eine Tatsache entdeckt, die dem Rang des Menschen in der Natur einen viel größeren Abbruch tat als das Galileis Beobachtung, daß sich die Erde nicht im Mittelpunkt des Universums befindet. Die Sonne, die das Herz unseres Planetensystems bildet, ist beileibe nicht einzigartig, sonder ein Stern unter anderen, Milliarden an anderen, die alle aus den Elementen Wasserstoff und Helium bestehen.

 
 

Datenschutz
Top Themen / Analyse
indicator Falltest
indicator DIE SCHATTENSEITEN DER KERNENERGIE:
indicator Warum glauben die Wissenschaftler, daß es einen Urknall gegeben hat?
indicator Erzeugung von Wasserstoff:
indicator Sollen wir Atomkraftwerke abschalten?
indicator Das Echolot
indicator Reaktorunfälle überall möglich
indicator Netzbetrieb
indicator Forschung und Entwicklung
indicator Die Geschichte der bemannten Raumfahrt


Datenschutz
Zum selben thema
icon Transistor
icon Energie
icon Schall
icon Einstein
icon Kernfusion
icon Bomben
icon Strahlung
icon Magnet
icon Kohäsion
icon Welle
icon Diamant
icon Newton
icon Blitz
icon Adhäsion
icon Biomasse
icon Gleitreibung
icon Dichte
icon Watt
icon Entwicklung
icon Otto
icon Laser
icon Reaktor
icon Widerstand
icon Kraft
icon Mikroskope
icon Dynamik
icon Turbine
icon Herstellung
icon Elektrizität
icon Gesetz
icon Strahlung
icon Theorie
icon Kapazität
icon Haftreibung
icon Transformator
icon Wirkung
icon Mechanik
A-Z physik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution