Nun, nachdem sich der sterbende Stern, mit einer Gewaltigen Energieausbruch, der die Helligkeit einer ganzen Galaxie übertreffen kann, verabschiedet, enthält das Auswurfmaterial all die vertrauten chemischen Elemente, aus denen wir bestehen, doch der zurückbleibende Rest könnte uns nicht exotischer oder fremdartiger erscheinen. Man kann annehmen, dass eine Supernova den Übergang von einem gewöhnlichen Stern in einen Neutronenstern darstellt, ein Stern, der auf eine Größe von zehn kilometern zusammengequetscht ist und eine Dichte hat, die vergleichbar ist mit der eines Atomkerns, 1015 mal höher als bei einem gewöhnlichen Feststoff und noch milliardenmal höher als selbst bei einem Weißen Zwerg.
Obwohl Ende der 30iger Jahre Theoretiker, darunter auch Robert Oppenheimer, die Physik der Neutronensterne erforscht hatten, blieb deren Existenz bis 1968 reine Vermutung. In diesem Jahr entdeckten Physiker eine Quelle am Himmel, die regelmäßig alle 1.3 Sekunden Radioimpulse aussandte. Bald fanden sie noch einige weitere Quellen, die alle mit bestimmten, regelmäßigen Perioden "tickten". Die Natur dieser Radioquellen, die man später Pulsare nannte, war verwirrend. Damit ihre Strahlung so schnellschwanken konnte, musste sie mit Sicherheit sehr kompakt sein. Bald darauf fand man unzählige Pulsare in unserer Galaxie, jeder ein übriggebliebener Neutronenstern aus einer Supernova.
Mit Neutronensternen bietet uns der Kosmos ein Laboratorium, in dem wir untersuchen können, wie sich Materie unter sehr viel extremeren Bedingungen verhält, als wir sie auf der Erde schaffen können. Im Grunde entspricht ein Neutronenstern einem Weißen Zwerg, bei dem der Entartungsdruck zwischen Neutronen statt Elektronen die Kraft liefert, die der Gravitation entgegenwirkt. Wir können aber die obere Massengrenze für einen Neutronenstern nicht einfach in Analogie zur Chandra-Grenze für Weiße Zwerge bestimmen, weil beim Gravitationsgleichgewicht Kernkräfte eine sehr wichtige Rolle spielen und unser Wissen über das Verhalten von Kernmaterie bei so hohen Dichten unvollständig ist. Aufgrund allgemeiner theoretischer Überlegungen können wir jedoch ziemlich sicher sein, dass keine Neutronensterne mit mehr als drei Sonnemassen existieren können. Zumindest sagt die Theorie einiges darüber aus, wie das Innere eines Neutronensterns aussehen müsste. Er sollte eine feste Kruste und eine flüssige Kernregion besitzen, wobei es sich bei dieser Flüssigkeit um eine sogenannte Supraflüssigkeit handelt, die fast keine Viskosität hat. Dies ist feststellbar durch die winzigen, ruckartigen Abweichungen der Perioden der Pulse, auch Gliches genannt, die durch das Aufspringen der festen Kruste durch Gezeiten Kräfte, hervorgerufen wird.
Neutronensterne ähneln der Erde in gewisser Art, auch sie besitzen Magnetfelder, die aber enorm viel stärker sind. Die magnetische Feldstärke an der Oberfläche eines Pulsars ist typischerweise einige billionenmal höher als bei der Erde und millionenmal höher als die stärksten Felder, die man im Laboratorium erzeugen kann. Magnetfelder von Neutronensternen sind so stark, dass sie die Struktur von Atomen erheblich verzerren und sie zigarrenförmig auseinanderziehen würden.
Auch bezüglich ihrer Gravitationsfelder sind Neutronensterne extrem: Die Gravitationskraft and der Oberfläche ist 1012mal so gross wie auf der Erde. Auch die Rotationsfrequenz ist beachtlich f = L/2 I. Damit Materie nicht weggeschleudert wird, muss die Gravitationskraft größer als die Fliehkraft sein:
m G M m 2 R => 2 G M
R2 R3
Neutronensterne müssen glatt sein, es können keine Berge existieren, die höher als ein Millimeter sind. Um das Gravitationsfeld eines Pulsars zu verlassen, bräuchte man eine Rakete die etwa die hälfte der Lichtgeschwindigkeit erreichen müsste um die Oberfläche des Neutronsterns zu verlassen können. Die Ruhmasse-Energie, die Energie, die freigesetzt würde, wenn die gesamte Materie des Sterns gemäss der Formel e=mc2 in Energie umgewandelt würde, eines solchen Sterns beträgt bis zu 20 Prozent! Die effektivsten Kernreaktionen erzeugen weniger als ein Prozent.
|