Jetzt möchte ich gerne etwas ins Detail gehen, und einen Endverstärker in seinem Funktionsprinzip beschreiben.
Es gibt zwar viele Bauweisen, doch werden die heutigen Verstärker meist nach folgendem Prinzip gebaut, welches im unteren Bild dargestellt ist. Eine der ganz wesentlichen Eigenschaften von Verstärkern ist die Eingangsstufe. Als Eingangsstufe dient hier ein doppelter Differenzverstärker, welcher einen sehr hohen Eingangswiderstand besitzt. Positive und negative Singnalanteile werden aufgrund von absolut symetrischer Auslegung völlig gleich behandelt. Ein extrem kleiner Klirrfaktor entsteht dadurch, dass sich geringe Restverzerrungen durch diese Schaltung zum grössten Teil aufheben. Die beiden Treiberstufen sind an deren Ausgängen angeschlossen, welche den Strom soweit erhöhen, damit die Endstufentransistoren angesteuert werden können. Hierbei werden die verschiedensten Transistoren verwendet, z.B. bipolare (wie im Bild), MOS-FET oder IGBT. Alle besitzen ihre Vor- und Nachteile, bei angepasster Schaltungsauslegung sind aber alle genau gleichwertig.
Die blau gefärbten Transistoren sind die Eingangsstufe und werden als Differenzverstärker eingesetzt. Sie sind in einer symetrischen Form angelegt. Die 2 oberen npn-Transistoren stellen das verstärkte Ausgangssignal dem Kollektor des rechten Transistors zur Verfügung, da sie auf einer Stromquelle arbeiten. Der untere Differenzverstärker ist aber mit pnp-Transistoren bestückt und arbeitet genau anders herum. Differenzverstärker besitzen naturgemäss 2 gleichberechtigte Eingänge. An den einen Eingang schliesst man das Eingangssignal und an den anderen über einen Spannungsteiler das Ausgangssignal der kompletten Endstufe an. Wie der Name Differenzverstärker schon andeutet, verstärkt er nur die Spannungsdifferenz an den beiden Eingängen: Egal ob man an beide Eingänge gleichzeitig 1 V oder 5 V anlegt, ist die Ausgangsspannung immer 0 V. Wenn man aber an den einen Eingang 1 V anlegt und an den anderen 1,001 V, so wird die Differenz von 0,001 V sehr stark verstärkt.
Aber für was genau ist das gut? Nun, man kann damit das Eingangssignal mit dem Ausgangssignal vergleichen. Selbst kleinste Abweichungen werden extrem hoch verstärkt und sorgen dafür, dass das Ausgangssignal so korrigiert wird, dass die Differenz Null ist.
Nicht zu vergesse ist die Treiberstufe (rosa), wobei die beiden Treiberstufen (oben und unten) als Emitterschaltung arbeiten, d.h. das jeweilige Ausgangssignal der beiden Differenzverstärker weiter verstärken. Der gelbe Transistor, der als Spannungs-
offset arbeitet und dafür sorgt, dass die beiden Ausgangssignale, die an die Endstufentransistoren gelangen, einen kleinen Pegelversatz besitzen. Dieser ist erforderlich, um den Ruhestrom des Verstärkers einzustellen. Dieser darf aber nicht Null sein, wegen möglichen Verzerrungen. Die roten Endstufentransistoren, bei denen der obere für die positiven Ausgangsspannungen und der untere für die negativen Ausgangsspannungen zuständig ist, beginnen nämlich erst ab einer Eingangsspannung von ungefähr 0,7 V zu leiten. Daher hätte man ohne diese Massnahme im Bereich von -0,7 bis +0,7 V eine tote Zone, die auch der Differenzenverstärker nicht mehr gut glattbügeln kann.
Die Endstufentransistoren besitzen eine grosse Stromverstärkung. Ihre Strombelastbarkeit bestimmt, wieviel Strom man bei einer bestimmten Ausgangsspannung einem Endverstärker entnehmen kann. Damit ein Transistor bei zu hohen Entnahmeströmen (z.B. bei einem Kurzschluss) nicht kaputt geht, ist mit den grünen Transistoren und den Widerständen in der Emitterleitung der Endstufentransistoren eine Strombegrenzung: Bei zu hohen Strömen ziehen sie dem jeweiligen Endstufentransistoren einfach die Eingangsspannung soweit weg, dass der Ausgangsstrom nicht weiter ansteigt.
Nun noch zum Tiefpassfilter am Eingang des Verstärkers. Er sorgt dafür, dass Frequenzen vom Verstärker ferngehalten werden, die er nicht richtig verarbeiten kann (aufgrund der Slew-Rate). Üblicherweise liegt die Eckfrequenz weit über dem Hörbereich und beträgt oft ca. 50 bis 100 kHz. Auswirkungen auf den Klang sind dadurch in nicht zu befürchten, da die wenigsten Menschen Töne von z.B. 16 kHz überhaupt noch hören können.
|