Die Punkte des Poincaré-Schnitts eines Systems sind ausreichend, um seinen Bifurkationsgrad und seine Komplexität bzw. Art (Bifurkation oder Chaos) zu bestimmen. Ein System mit einer periodischen Schwingung hat genau einen Schnittpunkt; nach der ersten Bifurkation genau zwei verschiedene Schnittpunkte, nach der zweiten Bifurkation sind es vier. Dies liegt daran, daß sich eine Schwingung mit n verschiedenen Schnittpunkten bei einer Bifurkation in zwei verschiedene Schwingungen mit je n Schnittpunkten aufteilt. Bei jedem Schritt verdoppelt sich also die Zahl der Schnittpunkte. Das heißt, daß ihre Anzahl gleich 2^Grad der Bifurkation [das \"^\" heißt \"hoch\" und ist fü die Browser, die das nicht anders darstellen können] ist, oder umgeformt: Grad = log2 Anzahl. Die Anzahl der Schnittpunkte gibt somit die Komplexität einer Schwingung an. Um dieses Phänomen näher zu untersuchen und um die Grenzen zwischen den einzelnen Bifurkationen näher kennenzulernen, stellt man die Pendelauslenkung j in den Schnittpunkten der Dämpfung M0 Brems gegenüber (Abb 4.3.1).
An der Abszisse der Abbildung 4.3.1 ist die Dämpfung (M0 Brems) angetragen. Links beginnt sie bei 0 und endet rechts bei 0,125. An der Ordinate ist die Auslenkung j der einzelnen Poincaré-Schnittpunkte angetragen (oben ist +pi, unten -pi), die erst nach einer gewissen Einschwingzeit des Pendels eingezeichnet wurden, da das Pendel eine bestimmte Zeit braucht, bis es sich in der für die Dämpfung typischen Schwingung befindet.
In der Vergrößerung lassen sich die Bifurkationsgrenzen ablesen (die erste Bifurkation wurde nicht berücksichtigt, da der Wert der Dämpfung nur sehr ungenau abzulesen ist):
Bifurkationsgrad = i
2
3
4
5
6
Dämpfung M0 Brems = ci
0,09447
0,09277
0,09240
0,09232
0,09230
Dämpfungsunterschied = ci-1 - ci
0,00170
0,00037
>0,00008
0,00002
Quotient d. Dämpfungsuntersch.
4,6
4,6
4
Es fällt auf, daß der Quotient der Dämpfungsunterschiede (deltai = (ci-1 - ci) : (ci - ci+1) ) konstant ist. Die Abweichung des letzten Wertes (delta5) ist auf die begrenzte Genauigkeit der Meßwerte zurückzuführen. Die Bifurkationsgrenzen lassen sich also folgendermaßen berechnen: ci = cunendl. + k · delta-i, wobei in diesem Fall cunendl. ungefähr 0,0922976 und k ungefähr 0,0459662 ist.
Das chaotische Punktewirrwarr ist also keine Schwingung mit relativ hohem Bifurkationsgrad (wie man vielleicht annehmen könnte), da Schwingungen mit endlichem Bifurkationsgrad nur bei einer Dämpfung auftreten, die größer als cunendl. ist.
|