Bei einem relativ hohen M0 Brems (=0,105) tritt eine periodische Schwingung auf (Abb. 4.1.1). Bei einer Verkleinerung der Dämpfung ist eine höhere Schwingungsamplitude zu erwarten, da die Wirbelstrombremse weniger Energie abführt. Weil sich aber auch die Geschwindigkeit (und damit auch die Bremswirkung) des Pendels erhöht, wird die Amplitude nicht laufend höher, sondern pendelt sich bei einer gewissen (etwas größeren) Amplitude ein.
Senkt man die Dämpfung (auf M0 Brems = 0,0994), so spaltet sich die Grundschwingung in zwei Schwingungen mit verschiedenen Amplituden auf, die sich nach jedem Schwingungsdurchgang abwechseln (Abb. 4.1.2). Dieses Verhalten nennt man Bifurkation, das sich wie folgt erklären läßt: \"Die Eigenfrequenz des Pendels ist abhängig von der Amplitude (...). Da die Anregungsperiode [des Oszillators] konstant bleibt, liegt bei größerer Amplitude keine Resonanz vor und die Amplitude wird kleiner. Bei der kleineren Amplitude stimmen Eigenschwingperiode und Anregung wieder zusammen, es herrscht wieder Resonanz. Die Amplitude wächst und der Zyklus beginnt wieder von vorne.\"(1)
Verringert man die Dämpfung noch weiter (auf 0,093), so spaltet sich die Schwingung wiederum auf. Die beiden Teilschwingungen sind jetzt jeweils zwei Perioden lang. (2. Bifurkation, Abb. 4.1.3). Bei nochmaliger Verkleinerung von M0 Brems (auf 0,0925) teilt sich die Schwingung abermals in zwei Teilschwingungen mit jeweils vier verschiedenen Perioden auf. (3. Bifurkation, Abb. 4.1.4). Diese Schwingung wiederholt sich also erst nach dem achtfachen der ursprünglichen Periodenlänge. Ab hier sind die Abstände zwischen den Bifurkationen so klein, daß sie kaum mehr \"getroffen\" werden können.
Bei einem Wert von M0 Brems = 0,092 ist das Verhalten chaotisch. (Abb. 4.1.5) \"Es stellt sich auch nach langer Einschwingzeit kein periodischer Vorgang ein, das System schwingt unregelmäßig (...). Der Vorgang ist natürlich immer noch deterministisch (...), aber nicht mehr stark kausal. Kleinste Störungen wirken sich stark auf das Verhalten aus, eine Langzeitvorhersage ist nicht mehr möglich (...).\"(2)
Bei einer noch kleineren Dämpfung (M0 Brems = 0,06) tritt plötzlich wieder Ordnung auf - es stellt sich eine stabile Schwingung ein (Abb. 4.1.6). Diese nennt man ein \"Fenster im Chaos\".
Verkleinert man M0 Brems weiter, werden die Schwingungen wieder chaotisch (Abb. 4.1.7).
Betrachtet man eine Reihe von chaotischen Schwingungen in einer Folge, können mehrere ähnliche Schwingungen hintereinander erkannt werden, die schließlich \"aufbrechen\" und sich zu einer neuen Schwingung formieren (Abb. 4.1.8). Es handelt sich hierbei um das Phänomen der Unterbrechung [intermittency]. Hier bleibt ein physikalisches System einige Zeit statisch, bis es plötzlich für einige Zeit einen chaotischen Ausbruch zeigt und dann wieder statisch ist; danach kommt wieder ein chaotischer Ausbruch und so weiter.(3)
|