Ultraschallschweißen:
Zu einer ausgereiften Technologie haben sich in den zurückliegenden 30-40 Jahren das Ultraschalllöten und -schweißen entwickelt. Löten und Schweißen stellen eine Anwendung des Leistungsultraschalls dar. Verfolgte man ursprünglich vor allem das Ziel, Aluminium und Aluminiumlegierungen zu löten, gelingt es heute, viele Metalle durch Ultraschall zu schweißen. Die zu schweißenden Komponenten können gleichartige und ungleichartige Metalle sein. Auch Plaste schweißt man mit Ultraschall. Für das Löten mit Ultraschall nutzt man die Ultraschallkavitation aus. Man benötigt ein Flussmittel z.B. Zinn, das zum Lötzweck erwärmt werden muss. Die bekannteste Ultraschallschweißmethode ist das Kaltpressschweißen. Dieses Kaltpressschweißen hat den Nachteil, dass hohe Drücke erforderlich sind und erhebliche Verformungen auftreten. Beim Kaltpressschweißen kommt es zu einer innigen Berührung der Teile in der Schweißebene und zu einer stoffschlüssigen Verbindung. Dabei werden die Oberflächenschichten zerstört und mit den Verschmutzungen seitlich herausgequetscht. Eine Ultraschallschweißmaschine hat die Aufgabe, hochfrequente mechanische Schwingungen zu erzeugen, diese der Schweißstelle zuzuleiten und Schweißteile unter Druck zu fixieren.
Ultraschallmikroskop:
Das Mikroskop ist ein Gerät, mit dem von einem sehr kleinen, für das Auge nicht mehr wahrnehmbares Objekt ein deutlich vergrößertes Bild erzeugt wird. In Luft oder anderen durchsichtigen Stoffen sind wir es gewöhnt, mit dem optischen Mikroskop zu arbeiten. Schallwellen werden in Luft und in Gasen stark gedämpft, ihre Reichweite ist gering. In Festkörpern und Flüssigkeiten können sie jedoch eindringen, auch wenn sie optisch undurchsichtig sind. Schallwellen besitzen hier gegenüber Lichtwellen einen großen Vorteil. Mit dem akustischen Mikroskop werden Objekte deutlich, die sich durch elastische Eigenschaften und verschiedene Schallgeschwindigkeiten unterscheiden. Beim Ultraschall ermöglicht der an Grenzflächen unterschiedlicher akustischer Impedanz reflektierte Schall den Aufbau eines Bildes. Lichtmikroskop und Ultraschallmikroskop sind keine Konkurrenten, sondern ergänzen einander. Vorteilhaft einsetzbar sind akustische Mikroskope (Ultraschallmikroskope) in der biologischen und medizinischen Forschung. Viele Strukturen lebender Zellen haben Abmessungen im Mikrometerbereich. Kleine Strukturelemente unterscheiden sich häufig stark in ihren elastischen Eigenschaften. Da die Proben in Wasser eingebettet sind und weder getrocknet noch angefärbt oder dem Vakuum ausgesetzt werden müssen, ist die Untersuchung am lebenden Material möglich. Besonders gut geeignet sind akustische Mikroskope auch in der Elektronik, z.B. bei der Untersuchung mikroelektronischer Schaltkreise. Die gewonnen akustischen Bilder sind kontrastreicher als optische Aufnahmen. Als weitere Einsatzmöglichkeit seien genannt die zerstörungsfreie Werkstoffprüfung, die Prüfung von Metalloberflächen und die Untersuchung von Festkörpern auf verschiedene Zustände.
|