Eine grundlegende Eigenschaft von ITS ist ihre Diagnosefähigkeit. Erwachsen aus der Kritik der Instruktionssysteme sollten die IT-Systeme adaptionsfähig gemacht werden. MANDL und HRON definieren deshalb auch Lernprogramme immer nur dann als "intelligent", "wenn sie in der Lage sind, einen flexiblen und adaptiven Dialog mit dem Lernenden zu führen." (Mandl/Hron, 1990: S. 19) Nach einem Input des Lernenden werden über eine Kommunikationsstruktur Kompetenz und Kompetenzdefizite analysiert. Dementsprechend stellt das System ein tutorielles Angebot zusammen. BÄUERLE schreibt dazu: "Bei Diagnosesystemen und sog. Intelligenten Tutoriellen Systemen handelt es sich sowohl um flexible als auch adaptive Programme." (Bäuerle, 1999: S.50) Um den unterschiedlichen Anforderungen gerecht werden zu können, hat man ähnlich den Expertensystemen eine Mehrkomponentenstruktur entwickelt:
a) Eine Komponente, die eine Modellierung des Wissensgebietes vornimmt
b) Eine Komponente, die ein Modell des Lernenden konstruiert
c) Eine Komponente, die pädagogische Strategien bereitstellt
d) Eine Komponente zur Kommunikation mit dem Lernenden
Nicht bei allen ITS sind alle vier Komponenten vertreten, so bestehen einige Systeme nur aus einer Wissensbasis, andere bestehen nur aus einem Lernermodell. Im folgenden sollen jedoch alle vier Komponenten und deren Verknüpfung untereinander deutlich gemacht werden. (siehe Abb.3)
Zu a) Wissenskomponente
Diese Komponente entspricht der Wissensbasis eines Expertensystems, was nicht weiter verwundert, da IT-Systeme der KI-Forschung entlehnt sind. Ihr Programmdesign entspricht daher einem, auf den lernenden Benutzer abgestimmten, Expertensystem. Das Wissensmodell besteht aus deklarativem, prozedualem und in neueren Entwicklungen von ITS heuristischem Wissen. Im deklarativen Wissensbereich wurden Begriffe definiert und deren Vernetzung untereinander hergestellt. Das prozeduale Wissen stellt sich in Form von Regeln und Prozessabläufen dar, "mit deren Hilfe sich Probleme lösen lassen sollen." (Schulmeister, 1997: S.182) Heuristisches Wissen imitiert das Problemlöseverhalten eines Experten, wobei dieses Verhalten nicht an einen Inhalt gebunden ist, sondern in Form von Regeln den Computer in die Lage versetzen soll, den Lösevorgang des Lernenden nachzuvollziehen oder ihm vorzugeben. SCHULMEISTER unterscheidet zwei Möglichkeiten für die Gestaltung eines IT-Systems. Zum einen das Black-box-Modell, welches eine Antwort formuliert, ohne dass der Lernende den Lösungsweg nachvollziehen kann. Zum anderen das Glass-box-Modell, das als Gegenteil zum Black-box-Modell mit einer Erklärungskomponente ausgestattet ist und in der Lage ist, das Problemlöseverhalten eines Experten zu imitieren und mit Hilfe seines heuristischen Wissens dem Lernenden die Lösungsschritte erklären kann.
Zu b) Lernerkomponente
Es gibt zwei Möglichkeiten ein Lernermodell zu konstruieren. Zum einen kann das Wissen des Lernenden als Teil des Expertenwissens abgeglichen werden. KERRES spricht in diesem Fall von einem Overlay-Modell (Kerres, 1998: S. 63), zum anderen werden gegebene Antworten von einem System analysiert und immer als Abweichung zum Expertensystem betrachtet. KERRES bezeichnet diese Modelle als Differenzmodelle (Kerres, 1998: S.63). Die erstere Möglichkeit unterliegt der Schwäche, dass das System nicht erkennen kann, "ob das Wissen des Lernenden sich deshalb von dem Wissen des Experten unterscheidet, weil der Lernende nicht über es verfügt oder weil er andere Strategien als der Experte verfolgt." (Schulmeister, 1997: S.184) Auch die zweite Variante, zwischen der Antwort des Lernenden und der Vorgabe in der Wissensbasis zu differenzieren, kann letztlich nur fehlendes Wissen annehmen, nicht aber verschiedene Lösungswege voneinander unterscheiden. Selbst wenn die Wissensbasis über heuristisches Wissen verfügt, ist doch die Menge an Regeln für einen Problemlösevorgang begrenzt, so dass es letztlich nicht eindeutig möglich ist, die falsche von der richtigen Lösung zu unterscheiden.
Eine große Schwäche des Lernermodells ist das Schattendasein der bisher in der Lernpsychologie schon gut erforschten Lernstile und Lernstrategien. Nur sehr begrenzt werden entsprechende Forschungsergebnisse in Lernermodellen verwendet, wodurch es möglich wäre, individuelle Lerndiagnosen durchzuführen.
Zu c) Pädagogisches Modell
Das pädagogische Modell simuliert das Entscheidungsverhalten des Lehrers. Seine Aufgabe besteht darin, die Ergebnisse des Lernermodells, des Diagnoseverfahrens also aufzugreifen, um daraus Lernstrategien abzuleiten. Die Variantenvielfalt, den Schüler zur Einsicht seines Fehlers zu führen und ihn dabei aus seinen eigenen Fehlern lernen zu lassen, lässt sich in zwei Teilgebiete aufspalten. Einerseits gibt es Systeme, die mit Hilfe des sokratischen Dialoges, also durch ein Frage-Antwort-Spiel, den Schüler zu einer Analyse seiner eigenen Fehler zu führen. Andererseits hat sich die Coaching-Methode entwickelt, bei der fehlende Wissensbestände mit Hilfe von einfachen Übungen oder dem Probieren von Problemlösungen ausgeglichen werden sollen, wobei der Coach erklärend aktiv wird, wenn der Lerner danach verlangt.
Zu d) Kommunikationskomponente
Die Kommunikationskomponente wird für die wichtigste und entscheidendste aller 4 Komponenten gehalten. Gerade durch die Interaktion zwischen Tutor und Lernendem ist eine individuelle Anpassung des Tutors an den Lernprozess möglich. Das unterscheidet ein ITS z.B. von einem ID-System, Autorensystem oder anderen frühen kognitivistischen und behavioristischen Lernprogrammen. Dennoch war lange Zeit die Interaktion zwischen Computer und Lernendem ein großes Problem. Heute ist die Computertechnologie und sind die Programmierer in der Lage, eine audio-verbale Kommunikation zwischen Computer und Lernendem herzustellen. Dennoch bemerkt WOOLF an dieser Stelle: "Effective communication with a student does not mean natural language understanding or generation [...] Rather effective communication requires looking beyond the words that are spoken and determining what the tutor and the student should be communicating about."
Ähnlich wie in ID-Systemen besteht auch bei den ITS das Problem der Operationalisierbarkeit von pädagogischen Situationen. In diesen Fällen ist eine Wenn-Dann-Abhängigkeit kaum herzustellen, auf die ein symbolverarbeitender Computer jedoch angewiesen ist. Deshalb werden auch die ITS immer in einer engen Verwandtschaft zu den behavioristischen Lernprogrammen stehen, wobei die Programmierer gezwungen sind, pädagogische Situationen auf die nach außen sichtbaren Ausschnitte zu beschränken. SCHULMEISTER schreibt dazu: "Aber die gesamte Anlage der ITS kommt nicht darum herum, diese Konzepte als Verhaltensziele zu operationalisieren, wenn Vergleiche von Lernermodell und Wissensmodell möglich sein sollen.
Es bleibt jedoch auch bei den IT-Systemen eine entscheidende Frage, ob sich der Lernende an das Lernprogramm anpassen soll, oder ob das Lernprogramm in der Lage sein sollte, sich an seinen Schüler anzupassen. Im ersten Fall wäre man wieder bei den Instruktionsmodellen der 50er und 60er Jahre. Der zweite Fall stellt die Programmierer vor wesentlich größere Probleme. Zum einen hat die kognitive Psychologie noch nicht alle Lernparameter so erforscht, dass es einem Computer möglich wäre, sich an die Lernvorgänge des Schülers anzupassen, auf der anderen Seite würde diese Form der Adaptivität zu einer "kombinatorischen Explosion" (Schulmeister, 1997: S.201) führen. Ist es jedoch sowohl der Kognitionsforschung als auch der Computertechnologie irgendwann möglich, diese Probleme aus dem Weg zu räumen, dann wäre ein Lernprogramm auch in der Lage, sich in einer, wie SCHULMEISTER sagt "natürlichen" Form an den Lernenden anzupassen. Bis heute sind ITS aber nur in der Lage, sich grob dem Lernenden anzugleichen. SCHULMEISTER ist jedoch eher der Ausfassung, dass es solche universalen Lernermodelle nie geben wird. Sowohl in der Kognitionsforschung als auch in der KI-Forschung hat man das Problem der Universalität dadurch lösen wollen, dass man Wissensgebiete in immer kleinere Teilgebiete zergliedert hat, um die daraus entstehenden Ergebnisse zu einem immer komplexer werdenden Wissen zusammenzuschließen. Jedoch sind nahezu alle Versuche gescheitert, weil die Atomisierung den Ausgangszustand verändert. (vgl. Kapitel 1.2.)
Eine andere Schwäche der ITS liegt in der Verarbeitung hermeneutischer Wissensgebiete. Die Programmierer eines ITS sind nicht in der Lage ein Sachgebiet, wie z.B. "methodologisches, historisches, soziales, psychologisches, ästhetisches, anthropologisches und ethnographisches Wissen" ( Schulmeister, 1997: S. 205) in die Wissensbasis zu implementieren, da eine Formulierung in Wenn-Dann-Regeln nicht möglich ist. Natürlich bestehen auch solche Wissensgebiete aus deklarativem Wissen, doch der all¬er¬grö߬te Teil ist dem Erfahrungswissen vorbehalten und stellt somit die Fachleute vor große Probleme.
|