Typisch für die Funktionsweise von Expertensystemen ist auf der einen Seite das Aufstellen sehr komplizierter Wenn-Dann-Regeln und auf der anderen Seite das Berechnen von Wahrscheinlichkeiten. Dadurch, dass es dynamische Regelsysteme sind, werden am Ende der Problemlösungssequenz mehrere richtige Lösungen benannt, die mit unterschiedlichen Wahrscheinlichkeiten belegt sind. Ähnlich einer quadratischen Gleichung, die immer zwei Lösungen hervorbringt, wäre in diesem Fall die Wahrscheinlichkeit der richtigen Lösung mit 1:1 zu bestimmen. (vgl. Puppe, 1988)
Expertensysteme sind Programmstrukturen, die aus mehreren Teilen bestehen. Grundsätzlich kann man Expertensysteme in zwei "Hauptmodule" einteilen (siehe Abb.1). Zum einen das Steuersystem und zum anderen die Wissensbasis. Zuerst soll das Steuersystem näher erläutert werden, um schließlich den Aufbau der Wissensbasis aufzuzeigen.
Das Steuersystem eines Expertensystems kann die Lösungsstrategie eines Experten simulieren. Die Regeln werden zu einer Konstanten, die auf unterschiedliche Wissensgebiete angewendet werden kann. Sie ist unabhängig von der Wissensbasis. Nach PUPPE besteht das Steuersystem aus 4 Komponenten (siehe Abb.1).
1. Die Problemlösungskomponente ist der Vermittler zwischen der Wissensbasis und dem Steuersystem. Hier wird "das Expertenwissen zur Lösung des vom Benutzer spezifizierten Problems interpretiert." (Puppe, 1988: S.12)
2. Die Interviewerkomponente liest die variablen Daten ein, bzw. die Aufgabenstellung von Seiten des Benutzers.
3. "Die Erklärungskomponente erläutert dem Anwender die ermittelte Lösungsstrategie." (Nebendahl, 1987: S. 33) So kann der Anwender Fehler in der Wissensbasis lokalisieren oder auch nur den Lösungsweg ablesen. In jedem Fall wird die Arbeit des Expertensystems transparent gemacht.
4. Die Wissenserwerbskomponente ist der Ort im Programm, in den der Experte sein Wissen eingeben kann.
Sind nur Wissenserwerbskomponente, Interviewerkomponente, Erklärungskomponente und Problemlösungskomponente vorhanden, spricht man von einer (Expertensystem-) Shell. Die Anwender können hier das Wissensgebiet selbst festlegen, indem sie die Wissensbank mit dem nötigen Wissen auffüllen.
"Die Wissensbasis eines Expertensystems enthält das Faktenwissen und Erfahrungswissen von Experten eines Aufgabengebietes." (Nebendahl, 1987: S. 33)
Die Wissensbasis besteht aus drei verschiedenen Teilen (siehe Abb.1):
1. Dem fallspezifischen Wissen von den jeweiligen Benutzern,
2. den Zwischenergebnissen und Problemlösungen, die von der Problemlösungskomponente hergeleitet wurden und
3. dem bereichsbezogenen Expertenwissen. (Puppe, 1988: S.12)
Während die Wissensbasis also dem Input entspricht, ist das Steuersystem das Herz des Expertensystems. Hier wird das Input so verarbeitet, wie die Regeln es vorschreiben. Erst das Steuersystem macht aus einem Expertensystem eine intelligente Maschine. Der Hauptvorteil der Trennung des Systems in Inferenzkomponente und Wissensbank ist der einer leichten Wartung und Änderbarkeit, da diese Systeme typischerweise eben in Gebieten mit sich änderndem Wissen eingesetzt werden.
Beim Erstellen eines Expertensystems vier Teilgebiete zu beachten: (vgl.Puppe, 1988: S.113ff.)
a) Wissenserwerb
b) Wissensrepräsentation
c) Inferenzmechanismus
d) Benutzerschnittstelle
zu a) Wissenserwerb
Der Wissenserwerb (vgl. Puppe, 1988: S.115ff.) ist der Versuch, das Wissen eines Experten in einer implementationsunabhängigen aber formalen Weise niederzulegen. Dies kann auf verschiedene Weise geschehen:
Indirekt:
Dazu muss der Wissensingenieur dem menschlichen Experten helfen, sein relevantes fachliches Wissen zu identifizieren, zu strukturieren und zu formalisieren. Andere Wissensquellen neben dem Experten können für den Wissensingenieur eigenes Fachwissen sowie Fallstudien oder Bücher sein.
Direkt:
"Der Experte formalisiert sein Wissen selbst." (Puppe, 1988: S.114) Dazu muss das Expertensystem eine leicht bedienbare Wissenserwerbskomponente haben.
Automatisch:
"Das Expertensystem extrahiert sein Wissen selbständig aus Falldaten oder verfügbarer Literatur." (Puppe, 1988: S.114) Diese Technik ist allerdings im Moment reiner Forschungsgegenstand.
Zum Wissen eines Experten können ganz verschiedene Dinge gehören, wie zum Beispiel Fakten, Überzeugungen, Methoden, Heuristiken und nicht zuletzt Problemlösungswissen (globale Strategien, Metawissen). Ein Phasenplan zum Wissenserwerb sieht folgendermaßen aus:
Zuerst wird ein Pflichtenheft mit organisatorischer Umgebung und Anforderungen an das Expertensystem erstellt. Anschließend wird der Grobentwurf und der zu betrachtende Realitätsausschnitt festgelegt. Danach wird das Wissen in einer, dem verwendeten Rechnersystem und der zur Anwendung kommenden Shell verständlichen Form aufbereitet. Die hierbei zustandekommenden Strukturen dienen dann der Formulierung von Regeln, die in einem letzten Teil des Phasenplans getestet werden. (nach Buchanan, 83: S.139)
b) Wissensrepräsentation
Die Wissensrepräsentation hat eine natürliche und effiziente Darstellung des "Wissens" zum Ziel. Unabhängig von der nicht ganz klaren Bedeutung von natürlich in diesem Zusammenhang ist klar, dass diese Bedingungen eventuell in Konflikt miteinander treten können. Hierzu sind Kalküle entwickelt worden, die den regelhaften Ablauf des Systems steuern.
Ein Kalkül beschreibt, wie man aus Aussagen mit Hilfe von Ableitungsregeln neue Aussagen erhält. Vorgegebene Aussagen sind die Axiome (Fakten, Annahmen, das was nicht in Frage gestellt wird). Abgeleitete Aussagen sind Theoreme (Schlussfolgerung). PUPPE benennt sechs unterschiedliche Eigenschaften von Kalkülen:
1. Adäquatheit: Natürlichkeit der Beschreibung der Welt
2. Effizienz: Relevanz der Schlussfolgerungen für die Welt
3. Mächtigkeit: Repräsentierbarkeit von Aussagen über die Welt
4. Entscheidbarkeit: Ein Kalkül verfügt dann über die Eigenschaft der Entscheidbarkeit, "wenn für eine beliebige Aussage entschieden werden kann, ob sie aus den Axiomen folgt oder nicht." (Puppe, 1988: S.18)
5. Vollständigkeit: "Ein Kalkül ist dann vollständig, wenn alle Schlussfolgerungen, die semantisch (zur Welt gehörig) gelten, auch syntaktisch (im Kalkül befindlich) herleitbar sind." (Puppe, 1988: S.18)
6. Konsistenz: Die Aussagen dürfen sich nicht widersprechen.
c) Ein Inferenzmechanismus
Ein Inferenzmechanismus ist repräsentationsabhängig. Dabei heißt Inferenz allgemein, dass aus vorhandenem Wissen Neues erschlossen wird. Nebenbei angemerkt können die Schlussverfahren bzw. das Wissen auch vage und unsicher sein.
In diesem Zusammenhang ist es wichtig, den Begriff "Regel" kurz zu erläutern. "Da Experten ihr Wissen oft in Form von Regeln formulieren, sind Regeln die verbreitetste Wissensrepräsentation in Expertensystemen." (Puppe, 1988: S. 21) "Eine Regel besteht aus einer Vorbedingung und einer Aktion." (Puppe, 1988: S. 21) PUPPE benennt zwei Arten der Aktionen. Zum einen die Implikation/Deduktion, und zum anderen Handlungen. Erstere prüfen den "Wahrheitsgehalt einer Feststellung" (Puppe, 1988: S. 21), während die Handlungen einen Zustand verändern können.
Zur Abarbeitung der Regelmengen stellt sich die Frage, ob die Regeln vorwärts- oder rückwärtsverkettet bearbeitet werden (siehe Abb.2). Eine Vorwärtsverkettung kann Schlussfolgerungen nur mit einer vorgegebenen Datenbasis ermöglichen. Hierbei werden zuerst alle Schlüsse errechnet, die sich aus der Wissensbank zusammen mit den fallspezifischen Fakten ergeben. Bei der Vorwärtsverkettung gibt es zwei verschiedene Phasen, um die relevanten Regeln zu finden. Zuerst sucht das System während einer Vorauswahl innerhalb der gesamten Datenbasis. In einer zweiten spezifischeren Auswahl können dann mit Hilfe von verschiedenen formalisierten Konfliktlösungsstrategien Regeln gefunden werden, die das gestellte Problem lösen können. (siehe Abb.2)
Bei der Rückwärtsverkettung geht man von einer Endhypothese aus und versucht Regeln zu finden, die diese Hypothese aus den bekannten Regeln herleiten. Hierbei ist der Prozess der Problemlösung dialogisch. Nach der Zielformulierung des Benutzers überprüft das System die Datenbasis nach relevanten Regeln, wenn das Problem lösbar ist, werden mit ähnlichen Konfliktlösungsstrategien Regeln gefunden, wie bei der Vorwärtsverkettung. Ist das Problem mit der vorgegebenen Datenbasis nicht zu lösen, wird ein Unterziel formuliert und das System braucht einen erneuten Input durch den Benutzer. Diese Schleife vollzieht sich solange, bis dem System alle Daten zur Verfügung stehen, um zu einer Schlußfolgerung zu kommen. (siehe Abb.2)
Die Vorwärtsverkettung ist vorteilhaft, wenn alle Daten von Anfang an vorhanden sind (z.B. Konstruktion) bzw. wenn auf neu ankommende Daten reagiert werden muss (z.B. Prozessüberwachung).
Die Rückwärtsverkettung hat Vorteile, wenn nur eine kleine Zahl von Endhypothesen vorhanden ist wie z.B. bei manchen Diagnose- und Klassifikationsaufgaben. Diese Methoden können bei Bedarf auch kombiniert werden. (vgl. Puppe, 1988: S.21ff.)
d) Die Benutzerschnittstelle
Die Benutzerschnittstelle muss mit zwei Anwendersichten konstruiert werden: Zum einen die Sicht für den Experten bzw. Wissensingenieur beim Aufbau und der Wartung der Wissensbank, zum anderen die Sicht des Nutzers in der Anwendung des Systems.
Bei Expertenschnittstellen (siehe Abb.1) sind zum Beispiel für die Eingabe von Wissen Regeleditoren üblich, oder die Implementation von formalen Sprachen zur Beschreibung von Regeln und Fakten. Als Forschungsgegenstand gibt es Versuche natürlichsprachlich - z.B. aus Texten - Wissen in das System zu übertragen. Ein anderer Forschungsgegenstand sind sogenannte lernende Systeme, die zumeist Regeln aus Beispielen selbständig extrahieren können sollen.
Ein wichtiger Aspekt des Wissenserwerbs ist die Sinnfälligkeitsprüfung, da neues Wissen mit dem alten in Widerspruch treten kann und immer wieder Seiteneffekte zum Beispiel durch neue, geänderte oder entfernte Regeln auftreten können. Es gibt noch wenig Methoden, die diese Problematik wirklich lösen können.
Die Schnittstelle Benutzersystem (siehe Abb.1) ist eine Dialogkomponente zur Problemformulierung für Rückfragen des Systems, für Fragen des Benutzers über den Lösungsweg und schließlich zur Ergebnisausgabe.
Angestrebt wird dabei von vielen KI-Forschern die möglichst durchgängige Verwendung von natürlicher Sprache. Beim jetzigen Stand der Technik ist dies jedoch reiner Forschungsgegenstand.
Die Ergebnisdarstellung kann dabei auch grafisch sein. Wichtig ist in einigen Fällen eventuell die Unterdrückung von Details, also eine Art Ergebnisabstraktion.
Die Erklärungskomponente liefert als Antwort zumeist eine Art Protokoll der Inferenzschritte. Dieses Protokoll wird oft noch aus Gründen der Verständlichkeit weiter aufbereitet, da das einfache Mitschreiben der Inferenzschritte für den Benutzer nicht oder nur sehr schwer verständlich ist. Diese Komponente sollte optimalerweise immer zugänglich sein. (siehe Abb.1)
Man kann der Erklärungskomponente zumeist zwei Typen von Fragen stellen: Wie-Fragen (Wie kommt es zu diesem abgeleiteten Faktum?) und Warum-Fragen (Warum wird diese Zwischenfrage gestellt?). (vgl. Puppe 1988: S.132ff.)
|