In aller Fachliteratur, in vielen Zeitschriften und Prospekten sind Fachbegriffe wie z.B. Frequenzdiagramm oder Klirrfaktor gang und gebe. Jeder vergleicht sie, man hat sich irgendwann gemerkt, ob ein großer oder ein kleiner Klirrfaktor besser ist.
Was die Begriffe jedoch tatsächlich bedeuten, wie man darauf kommt weiß jedoch bei weitem nicht jeder der sie benutzt. Ich versuche nun die fünf wichtigsten zu erläutern, teilweise auch durch Versuche zu bestätigen.
2.4.1 Frequenzdiagramm
Ein Kleinkind vermag Töne mit Frequenzen von 15 Hz bis etwa 20 kHz zu hören. Die Fähigkeit hohe Töne zu hören nimmt mit dem Alter ab.
Zwecks Hörkomfort sollte ein guter Lautsprecher möglichst alle Töne mit Frequenzen zwischen 30 Hz und 16 kHz mit gleicher Lautstärke wiedergeben können.
In einem Frequenzdiagramm kann man erkennen, ob der Lautsprecher bei gleichbleibender Leistung aus dem Verstärker die Lautstärke bei verschiedenen Frequenzen halten kann.
Versuch:
Ein Frequenzdiagramm ist einfach zu erstellen: Man nimmt einen Frequenzgenerator und speist mit diesem den Lautsprecher. Mit einem Mikrofon wird nun die Lautstärke bei den jeweiligen Frequenzen gemessen (Da mir kein digitales dB - Meßgerät zu Verfügung stand benützte ich hier ein Oszilloskop). So entsteht ein Diagramm mit zwei Achsen: einer Lautstärke-Achse und einer Frequenz-Achse. Die Kurve sollte zwischen den beiden Eckdaten 30 Hz und 16 kHz sich möglichst einer Geraden nähern. Eine Gerade würde bedeuten, daß der Lautsprecher bei gleichbleibender Leistung aus dem Verstärker auf allen Frequenzen zwischen 30 Hz und 16 kHz die gleiche Lautstärke hätte - dies wäre der Optimalfall. In der Praxis sind kleine Abweichungen zu vernachlässigen, da das menschliche Gehör nur Unterschiede von mind. 3 dB wahrnehmen kann.
Da ich kein Lautstärke-Meßgerät zu Verfügung hatte messe ich anstatt Lautstärke die maximale Amplitude des ausgehenden Frequenzstromes - die Stromstärke I(f).
Aufbau:
Abb. 3
Fehlerquellen:
Bei der Erstellung der Wertetabelle fielen folgende Fehlerquellen wohl am meisten ins Gewicht:
1. Die Messungen wurden in einem nicht schalltoten Raum durchgeführt. Das heißt, sie werden stark von Reflektionen beeinträchtigt.
2. Da mir kein dB - Meßgerät zu Verfügung stand mußte die Lautstärke über den Oszillographen ermittelt werden. Die Amplitude der Sinuswellen [Skt] gab mir die Lautstärke an, diese mußten jedoch vom Bildschirm abgelesen werden woraus sich weitere Ungenauigkeiten ergaben.
Ergebnisse:
Wertetabelle
Frequenz [Hz] Stromstärke [Skt] Frequenz [Hz] Stromstärke [Skt]
10 - 90 nicht meßbar 1500 6,5
100 2 2000 10
150 6 3000 5,5
200 4 4000 10
300 3 5000 6,5
400 2 6000 5
500 3 7000 4
600 3,5 8000 2
700 3,4 9000 3
800 4,5 10000 3
900 5 15000 6,5
1000 5,5 20000 9
Besonderheiten:
1. Wenn man die Frequenz bei etwa 1,2 kHz erhöht, kann man ein leichtes Knacken vernehmen. Dies läßt sich vermutlich auf ein Umschalten der Frequenzweiche zurückführen.
2. Das absolute Lautstärkemaximum erreicht der Lautsprecher bei ca. 2,2 kH
Kurve:
2.4.2 Klirrfaktor
Der Klirrfaktor bezeichnet den Anteil an unerwünschten Tönen, welche ein Lautsprecher ausstrahlt.
Führt man einem Lautsprecher ein Tonsignal von z.B. 2000 Hz zu, so sollte er theoretisch auch nur diesen Ton ausstrahlen. Dies wäre dann ein Klirrfaktor von 0%. Tatsächlich ist es jedoch so, daß der Lautsprecher neben dem erwünschten Ton auch noch andere Töne ausstrahlt. Diese bezeichnet man als Oberwellen. Die stärksten Oberwellen liegen beim Zwei- oder Dreifachen der Grundfrequenz. Man nennt sie Kn (Die zweite Oberwelle K3 von unserer Grundfrequenz von 2000 Hz wäre dann z.B. 6000 Hz). Ein Klirrfaktor von < 2% ist für einen Lautsprecher bereits im sehr guten Bereich. Man ermittelt den Klirrfaktor zwischen etwa 50 Hz und 10 kHz. Dies hat den einfachen Grund, daß der Klirrfaktor eines Hochtöners nicht von Interesse ist, da schon die erste Oberschwingung für uns nicht mehr hörbar ist.
Versuch:
Da ich kein digitales Meßgerät zu Verfügung habe, beschränke ich mich darauf nachzuweisen, daß ein Klirrfaktor (bzw. Oberwellen) vorhanden ist (sind).
Wir speisen die Box mit einer bestimmten Frequenz aus dem Frequenzgenerator und lassen uns mit einem Mikrofon die von der Box ausgestrahlten Frequenzen anzeigen. Um den Klirrfaktor tatsächlich in einer Prozentzahl angeben zu können müßten wir nun feststellen, wie groß der Anteil der Lautstärke der Oberwellen an der Gesamtlautstärke ist. Dies ist jedoch auf dem Bildschirm des Oszillographen nur zu erahnen. (Aufbau wie Abb. 3 des vorherigen Versuchs)
Fehlerquellen:
1. Wir befinden uns wieder in keinem reflektionsfreien Raum, was die Messung der vom Lautsprecher ausgesandten Wellen beeinflußt.
2. Wieder können wir die Lautstärke nur vom Oszillographen ablesen, was keine genaue Messung zuläßt.
Ergebnisse:
Bei etwa 10 kHz fing ich an auf dem Bildschirm des Oszillographen nach Oberwellen zu suchen. Hier wurde ich noch nicht fündig. Erst bei niedrigeren Frequenzen (im Bereich von ca. 500 Hz) wurden ganz klar die erste und zweite, manchmal auch die dritte Oberwelle sichtbar.
2.4.3 Wirkungsgrad
Der Wirkungsgrad gibt an welche Lautstärke ein Lautsprecher erzeugt, wenn er mit einer bestimmten Leistung angesteuert wird. Der Wirkungsgrad wird in dB-Watt/m gemessen. Herkömmliche HiFi-Systeme haben einen Wirkungsgrad von etwa 85-90 dB-Watt/m, PA-Lautsprecher weisen Wirkungsgrade bis zu 110 dB-Watt/m auf. Für Hifi-Systeme ist der Wirkungsgrad nur von unwichtiger Bedeutung, da er nichts über die Qualität des Lautsprechers aussagt. Leistung ist eigentlich im Wohnzimmerbereich immer genug vorhanden. Wichtig wird der Wirkungsgrad bei der Beschallung von offenen Geländen oder großen Hallen wo mehr auf Lautstärke als auf Qualität geachtet werden muß.
2.4.4 Impedanz
Die Impedanz eines Lautsprechers ist sein Innenwiderstand im Wechselstromkreis. Die Impedanz wird wie der Gleichstromwiderstand in Ohm gemessen. Als Faustregel kann man sich merken, daß der Gleichstromwiderstand einer Box etwa 20% kleiner ist als ihre Impedanz. Also weist eine Box mit einer Impedanz von 8 Ohm einen Gleichstromwiderstand von etwa 6,4 Ohm auf.
Die gängigen Impedanzen von Lautsprecherboxen liegen bei 4 oder 8 Ohm. Dies ist besonders beim Anschließen der Box am Verstärker von Wichtigkeit. Niemals darf die Impedanz der Lautsprecherbox unter der Ausgangsimpedanz des Verstärkers liegen. Ist dagegen die Impedanz der Lautsprecherbox höher als die des Verstärkers, schmälert dies lediglich die Ausgangsleistung des Verstärkers.
2.4.5 Belastbarkeit
Die Belastbarkeit von Lautsprecherboxen gliedert sich in drei Teilbereiche: Der Sinus- und Musikbelastbarkeit und der Impulsbelastbarkeit, wobei den beiden ersten die größere Bedeutung zukommt.
Die Sinusbelastbarkeit wird geprüft, indem man das Lautsprechersystem 48 Stunden lang mit einem festen Rhythmus und einem konstanten Signal belastet (Genaueres: DIN 45573). Diesen Test muß die Lautsprecherbox ohne Schaden überstehen. Die Sinusbelastbarkeit ist also die Dauerbelastbarkeit einer Lautsprecherbox.
Die maximale Belastung einer Lautsprecherbox für kurzen Zeit (> 2 Sek.) ohne daß es zu hörbaren Verzerrungen oder entstehende Schäden kommt nennt man die Musikbelastbarkeit.
In vielen Musiksignalen kommen Elemente vor, die sehr kurz das Lautsprechersystem sehr stark belasten. Die Impulsbelastung ist so definiert, daß eine Lautsprecherbox auch sehr kurze (< 10 mSek.) aber sehr starke Belastungen ohne Schäden verkraftet.
|