Stoffwechselphysiologie: 6 CO2 + 12 H2O (als Elektronendonator) ===> [Lichtenergie] [Chlorophyll] C6H12O6 (Glukose) + 6 O2 + 6 H2O (Gesamtreaktion der Fotosynthese oder Fotosynthesegleichung) Exogene Faktoren der Fotosynthese: Licht, Wasser, CO2, Temperatur. Nachts findet keine Fotosynthese statt. Am Temperaturkompensationspunkt fällt die Fotosyntheseleistung ins Negative. RGT-Regel: Wird die Temperatur einer chemischen Reaktion um 10°C erhöht, verdoppelt sich die Reaktionsgeschwindigkeit. Macht sich bei der Stoffwechselaktivität von Pflanzen und bei Wechselwarmen bemerkbar. Die Fotosynthese verläuft in zwei Schritten. Lichtreaktion: Primäre Reaktion; temperaturunabhängig, aber lichtabhängig; Formel: 12 H2O + 12 NADP+ + 18 ADP ===> [Lichtenergie] [Chlorophyll] 6 O2 + 12 NADPH/H+ + 18 ATP. Zweck: Energiegewinn durch gebildetes ATP, das nun für andere Stoffwechselprozesse zur Verfügung steht. Dunkelreaktion: Sekundäre Reaktion; temperaturabhängig, aber lichtunabhängig; Formel: 6 CO2 + 12 NADPH/H+ + 18 ADP ===> [Lichtenergie] [Chlorophyll] 6 H2O + C6H12O6 + 18 ADP + 12 NADP+ + 18 P. Zweck: Endgültige Fixierung der Energie in Form von Zuckermolekülen. Fotosynthese ergibt Wachstum, Samen bzw. Früchte und Speicherstoffe. Fructose und Glukose als Endstoffe.
Proteinbiosynthese: Die "ein-Gen-ein-Protein"-Hypothese sagt aus, dass die DNA als Erbsubstanz die Bauanweisungen für Enzyme und andere Proteine enthält. Tatsächlich sind die Ribosomen der Ort der Proteinbiosynthese. In der DNA des Zellkerns ist genetische Information gespeichert. Die Umsetzung der Information, die Synthese von Proteinen, erfolgt an den Ribosomen des Cytoplasmas. Da die DNA den Zellkern nicht verlässt, hat man daraus die Hypothese abgeleitet, dass die genetische Information über Botenmoleküle zu den Ribosomen gelangt. Die Funktion des Boten übernimmt die sogenannte Messenger-RNA (mRNA). Sie liest an der DNA das Programm für die Synthese eines Proteins ab und wandert gewissermaßen als Genkopie zu den Ribosomen. Dort wird die Information der mRNA in ein Protein umgesetzt. Es lässt sich also folgender Fluss der genetischen Information erkennen: DNA mRNA Protein (zentrale Dogma der Molekularbiologie). Genauere Untersuchungen zeigten, dass für die Proteinbiosynthese neben der mRNA noch weitere RNA-Arten erforderlich waren, nämlich die Transfer-RNA (tRNA) und die ribosomale RNA (rRNA). mRNA und tRNA sind im Cytoplasma enthalten, rRNA ist in die Ribosome eingebaut. Die rRNA dient vermutlich dem Erkennen und Binden der mRNA am Ribosom.
Der Genetische Code: Die Eigenschaften eines Proteins werden durch seine Aminosäuresequenz bestimmt. Beim Überschreiben genetischer Information auf mRNA wird die Basensequenz der DNA abgelesen. In der Basenfolge der mRNA muss die Aminosäuresequenz verschlüsselt sein. Der Genetische Code arbeitet also mit vier der Basen der Nucleinsäure (C, G, A, U). Auf der mRNA wird die Information für eine Aminosäure durch eine Gruppe von drei hintereinander liegenden Basen verschlüsselt. Ein solches mRNA-Basentriplett wird auch Codon genannt. Von den 64 möglichen Kombinationen codieren 61 Codons Aminosäuren, die Kombinationen UAA, UAG und UGA sind Stoppsignale für die Beendigung der Proteinsynthese (siehe Code-Sonne). Durch das Codon AUG wird der Start der Proteinsynthese ausgelöst. Der Genetische Code hat zum größten Teil universelle Gültigkeit, was einen überzeugenden Beleg für den gemeinsamen Ursprung aller heute existierenden Lebewesen liefert.
Zur Struktur der DNA: Sie ist in den Chromosomen des Zellkerns enthalten. In der DNA wechseln sich die Bausteine Zucker und Phosphat regelmäßig ab und bilden so ein regelmäßiges monotones Grundgerüst (Zucker-Phosphat-Band).1953: Das Watson-Crick-Modell. Danach können sich innerhalb der DNA nur Guanin und Cytosin sowie Thymin und Alanin durch drei bzw. zwei Wasserstoffbrücken verbinden.
Struktur und Aufgaben eines bifazialen Laubblatts: Cuticula Begrenzende wasserabweisende Wachsschicht, Schutz vor Verdunstung an der Pflanzenoberfläche. Obere Epidermis Schutz, Stabilität, Festigung. Palisadenparenchym Hauptassimilationsgewebe; Fotosynthese, Speicherfunktion, Sekretion bestimmter Stoffe, Wundheilung. Schwammparenchym mit Interzellularen Fotosynthese (Atmung) und Gasaustausch. Leitbündel Bestehend aus Xylem (mit dem Wasser und gelöste Mineralstoffe, also Assimilate, nach oben - von den Wurzeln in die Triebe und Blätter - transportiert werden) und Phloem (das die in den Blättern produzierten organischen Produkte der Fotosynthese und anderer Stoffwechselvorgänge in diejenigen Pflanzenteile befördert, die sie gerade zur Ernährung benötigen). Untere Epidermis mit Epidermishaaren. Spaltöffnungen regulieren den Gasaustausch; Transpiration. Abschließende Cuticula.
Osmose: Eine einseitig verlaufende Diffusion, die auftritt, wenn zwei gleichartige Lösungen unterschiedlicher Konzentration durch eine semipermeable Membran getrennt sind. Dabei wird die höher konzentrierte Lösung so lange verdünnt, bis gleich viele Moleküle in beide Richtungen diffundieren. Osmose bewirkt den Stofftransport, reguliert den Wasserhaushalt und erzeugt einen als Turgor bezeichneten Innendruck, welcher der Pflanze Form und Stabilität verleiht.
Diffusion: Das Fließen von Materie von einem Ort höherer Konzentration zu einem Ort niedrigerer Konzentration. Beispiel: Transpiration von Wasser durch eine Pflanzenoberfläche.
Spaltöffnungen: Ihre Aufgabe ist der Gasaustausch mit der Atmosphäre. Aufnahme von CO2, Abgabe von O2 und überschüssigem H2O. Keine Wasseraufnahme! Bei hohen Temperaturen wird der Wasserverlust der Pflanze durch Verschließung minimiert. Der abgegebene Wasserdampf kühlt den Pflanzenkörper und schützt vor Überhitzung, da der Umgebung Wärme entzogen wird. Die Schließzellen verdicken sich durch Wassereinlass (osmotisch). Transpiration: Wasserabgabe durch die Spaltöffnungen. Äußere Faktoren der Transpiration: Sinkt die Luftfeuchtigkeit, steigt die Wasserabgabe durch die Spaltöffnungen an, da sich die Konzentration zwischen Blatt und Umfeld unterscheidet (Dampfdruckgefälle). Bei 100% Luftfeuchtigkeit ist keine Verdunstung mehr möglich (mache Pflanzen: Guttation, d. h. durch Wurzeldruck werden aktiv Wassertropfen abgegeben). Hohe Temperatur bedeutet hohe Luftfeuchtigkeit ( Regenwald), also viel Verdunstung, die Schließzellen sind dicht. Steigt die Windgeschwindigkeit, wird die Luftfeuchtigkeit herabgesetzt, viel Verdunstung, also steigt die Transpiration.
Zellatmung: Mitochondrien dienen der Energieerzeugung. Jede Zelle braucht Energie für Wachstum und Fortpflanzung, und diese Energie stammt zum größten Teil aus den Mitochondrien, in denen die letzten Stadien des Nährstoffabbaus stattfinden. Da bei diesem Vorgang Sauerstoff verbraucht und Kohlendioxid produziert wird, bezeichnet man ihn auch als Zellatmung.
Standorte: In schattig-feuchten Gebieten Angriffsfläche für Luft durch große Blätter, Oberflächenerweiterung durch Papillen sowie vorgewölbten Spaltöffnungen (viele und große), große Interzellularräume (ebenfalls transpirationsfördernd) und schwach ausgebildete Wurzeln. In trocken-heißen Gebieten dicke Außenwand (mehrschichtige Epidermis, mächtige Cuticula), tief eingesenkte (und wenige) Spaltöffnungen (damit das Wasser bei Wind nicht abgetragen wird), wasserspeichernde Blätter (Blattsukkulenz); bei Nadeln: wasserspeichernde Sprossachse (Stammsukkulenz), Wurzeln weit ausladend, flachgründig, manchmal wasserspeichernd (Wurzelsukkulenz), geringst mögliche Oberfläche (keine Blätter Nadeln; Säulenform).
|