Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


biologie artikel (Interpretation und charakterisierung)

Das gen-protein-kopplungsproblem



Um zu verstehen, woher diese Unmöglichkeit kommt, muß man sich vor Augen halten, wie das Leben heute funktioniert. Unabhängig von seiner Gestalt arbeitet nämlich jeder Organismus und jeder Einzeller nach einem grundlegenden Schema. Er verfügt über einen genetischen Apparat zur Speicherung seiner Erbinformation. Nahezu alle Lebewesen setzen dazu die DNA ein. Die DNA ist ein sehr guter Informationsspeicher, ihre Fehlerquote ist sehr gering. Allerdings ist sie nur das - ein Speicher. Es ist so, als hätte man eine Diskette in der Hand.
Jedes Lebewesen hat aber das Ziel, sich fortzupflanzen. Was muß es tun, um das zu erreichen? Das wichtigste und unabdingbarste ist es die Erbinformation zu kopieren. Man kann aber nicht einfach so aus einem DNA-Strang zwei Stränge erzeugen, sondern man braucht spezielle Zusätze dazu, nämlich Proteine. Es dürfen nicht einmal beliebige Proteine sein, sondern hochspezialisierte und sehr komplexe Enzyme. Nur sie sind in der Lage, die DNA fachkundig zu zerschneiden, zusammenzufügen und zu kopieren.
Woher kommen aber diese Proteine? Sie sind im genetischen Bauplan ebenfalls gespeichert. Genauer gesagt findet sich dort Stück für Stück die Anweisung, wie der Organismus vorgehen muß, um ein bestimmtes Protein zu bauen. Unter den ausführenden Elementen bei diesem Vorgang finden wir die RNA. Den genaue Vorgang zu erläutern, ist nicht notwendig. Der Grundgedanke ist klar: die DNA enthält die Informationen, um Proteine zu produzieren, die wiederum die DNA duplizieren können.
Doch hier gibt es ein Problem. Ganz gleich, ob wir postulieren, daß die DNA dem ersten Leben als Massenspeicher gedient hat, oder ob die einfacher zu kopierende RNA diese Aufgabe übernommen hat, geraten wir in eine Zwickmühle. Zunächst einmal stellt sich die Frage, was denn nun bei diesem Kreislauf zuerst entstanden ist, die RNA oder die Proteine. Paradoxer Weise ist keine der beiden Alternativen möglich. Um ein bestimmtes Protein zu synthetisieren, braucht man eine gewisse Anzahl an Nukleotiden. Um also auch nur die primitivsten vorstellbaren Organismen in RNA zu codieren, die kaum mehr als ihr eigenes Replikations-Enzym in ihrem genetischen Code enthalten, braucht man mehrere hundert Nukleotide. Die RNA müßte also von ihren ersten Anfängen auf weit über hundert Nukleotiden anwachsen, um überhaupt erst einmal ein Replikase-Enzym synthetisieren zu können. Doch ohne Replikase-Enzym ist, wenn man die Selbstreplikation der RNA betrachtet, nur eine verläßliche Reduplikation von allerhöchstens hundert Nukleotiden möglich. Selbst dies ist nur ein theoretischer Wert: mit heutigen Versuchen, selbstreplizierende RNA zu erzeugen, gelang es bisher nicht einmal, ein autokatalytisches Molekül aus 20 Nukleotidbasen zu erreichen, obwohl man spezielle, künstlich geschaffene und energiereiche Nukleotid-Einheiten verwendete, die es auf der Urerde vermutlich nicht gab. Bei einer größeren Nukleotidanzahl macht es die extrem hohe Fehlerquote unmöglich, eine stabile Population aufzubauen. Um die Unmenge an genetischer Information zu kopieren, die wir heute besitzen, braucht man mindestens ein Enzym. Aber dieses Enzym kann man erst synthetisieren, wenn man über diese Unmenge an Nukleotiden bereits verfügt. Man sieht also, es handelt sich um ein Problem ähnlich dem klassischen Paradoxon von der Henne und dem Ei. Es gibt jedoch die verschiedensten Theorien, die eine Antwort darauf zu haben glauben.


Theorie der autokatalytischen RNA
Mit der Theorie autokatalytischen RNA behauptet Walter Gilbert, daß sich zufällig nahezu hundert Nukleotidbasen zusammengefügten, die dann rasch mutierten und so beeindruckende enzymatische Fähigkeiten entfalteten. Dadurch konnten sie auch ihre Fähigkeiten zur Selbstreplikation verbessern. Sie wirkten praktisch als Informationsspeicher und Katalysatoren in einem. Nach einer ausreichenden Verbesserung der Fehlerquote bei der Autokatalyse war es dann auch kein Problem mehr, größere Nukleotidketten zu bilden, die dann auch schon für Proteine codieren konnten, welche die enzymatischen Aufgaben weit besser ausführen konnten als ihre Erschaffer.
Gegen diese Theorie spricht jedoch, daß heutige Experimente mit hochentwickelter RNA nicht einmal annähernd die geforderten autokatalytischen Fähigkeiten erzielen. Befürworter der Theorie meinen, daß die Ur-RNA über mehrere Millionen Jahre hinweg sehr wohl diese Fähigkeiten durch Mutation hätten erwerben können. Und tatsächlich ist es in jüngster Vergangenheit Forschern gelungen, aus Einzellern eine RNA-Kette zu extrahieren, die bemerkenswerte Fähigkeiten an den Tag legt. Sie ist normalerweise als Intron, also als ein uninterpretierter Teil der RNA enthalten, kann sich jedoch aus der längeren Kette selbst herausschneiden und die Kettenreste wieder zusammenfügen. Dies nennt man auch Spleißen. Auf diese Art wirkt die RNA gewissermaßen als ihr eigenes Enzym und wird deshalb auch Ribozym genannt. Sie ist auch in der Lage, andere Nukleotidketten miteinander zu verbinden, sofern diese einem bestimmten Muster entsprechen, das in der RNA enthalten ist. Die Wissenschaftler entfernten dieses Muster aus der RNA, und tatsächlich scheint die RNA jetzt in der Lage zu sein, Nukleotidketten anhand beliebiger Vorbilder neu zusammenzusetzen. Dadurch könnte sie auch in der Lage sein, sich selbst zu replizieren. Allerdings braucht sie dazu nicht nur einzelne Nukleotide, sondern eben ganz Ketten, außerdem akzeptiert sie auch solche Ketten, die nicht völlig mit dem Original identisch sind, daher ist der Kopiervorgang äußerst fehlerhaft.
Das kürzlich entdeckte Ribozym hat also zwar nicht die Fähigkeit zur Selbstvermehrung, untermauert allerdings die Vermutung, daß diese Fähigkeit bei RNA-Molekülen prinzipiell möglich ist.

Theorie der Hyperzyklen
Die derzeit anerkannteste Theorie postuliert ebenfalls, daß die RNA schon vor den Proteinen existierte. Damit hat sie, wie wir zu Beginn gesehen haben, einigen Erklärungsbedarf bezüglich der Selbstreplikation. Der Schöpfer dieser Theorie, Manfred Eigen, findet jedoch eine elegante Antwort auf diesbezügliche Fragen. Er nimmt an, daß sich durch Zufall ein RNA-Molekül aus etwa hundert Nukleotiden aus der Ursuppe gebildet hat, welches zwar für kein Protein codiert, aber selbstreplizierend ist. Um jetzt wenigstens für ein einziges Protein codieren zu können, muß die Nukleotidzahl dramatisch anwachsen.
Es wurde bereits vor Eigen an die Lösung gedacht, die genetische Information zu teilen und so jeden Teil getrennt der Evolution auszusetzen. Doch scheitert dieser Gedanke an der Tatsache, daß durch die Konkurrenz sämtlicher RNA-Abschnitte um dieselben Basen sich schließlich irgendein Teil schneller replizieren kann als alle anderen, woraufhin die übrigen zugrunde gehen.
Die Eigensche Theorie bietet jedoch den sogenannten Hyperzyklus als Ausweg an. Hierbei wird die Information ebenfalls geteilt, doch anstatt daß sämtliche Einzelabschnitte der RNA autokatalytisch wirken, unterstützen sie durch ihre enzymatischen Fähigkeiten den jeweils folgenden Abschnitt. Der letzte Abschnitt wirkt wiederum katalytisch auf den ersten. Auf diese Weise ist es unmöglich, daß ein Teil der RNA die Oberhand gewinnt, da er dadurch das Wachstum aller anderen Teile sofort fördern würde.
Durch den Hyperzyklus kann die genetische Information also mit einer praktisch beliebigen Genauigkeit repliziert werden, sofern die Gesamtmenge in genügend viele Abschnitte unterteilt wird. Aber auch Hyperzyklen haben nachweislich eine endliche Lebensdauer. Prinzipiell sind vier verschiedene Möglichkeiten einer Katastrophe für Hyperzyklen vorstellbar:
- Selbstsüchtige RNA: Ein RNA-Molekül mutiert, so daß es nur mehr sich selbst, aber nicht mehr das nachfolgende Molekül katalysiert.
- Kurzschluß: Ein RNA-Molekül katalysiert plötzlich ein viel späteres Molekül in der Kette. Der Hyperzyklus läßt also einen Teil der Botschaft auf einmal aus und kontrahiert zu einer einfacheren Kette.
- Populationskollaps: Bei kleineren Zyklen können statistische Fluktuationen zu einer Ausrottung einer ganzen Gruppe von RNA-Abschnitten führen. Dadurch wird der gesamte Hyperzyklus unterbrochen.
- Fehlerkatastrophe: Trotz der Verbesserten Reduplikationsfähigkeit durch den Hyperzyklus kann es immer noch vorkommen, daß Information fehlerhaft kopiert wird und sich durchsetzt, da sich der Fehler nicht schädlich auf den Hyperzyklus als solchen auswirkt. Damit ist aber das Ziel, die Information fehlerfrei weiterzugeben, verfehlt.

Theorie des unbekannten Moleküls
Einen anderen Weg geht Gerald F. Joyce. Er meint, daß vielleicht nicht einmal die RNA das ursprünglichste aller Moleküle des Lebens ist, sondern vielmehr ein bis jetzt völlig unbeachtetes, ja vielleicht sogar völlig unbekanntes Molekül. Es könnte die Information gespeichert und sich selbst repliziert haben. Irgendwann einmal replizierte es nicht nur sich selbst, sondern auch die RNA, die dann auch die Eigenschaft der Informationsspeicherung übernahm. Später war die RNA komplex genug, um Proteine zu synthetisieren, die dann die Aufgabe des unbekannten Moleküls übernahmen. Die Aufgabe der Informationsspeicherung wurde schließlich an die DNA übergeben, und so währen wir beim heutigen Stand. Unklar ist aber, welches Molekül diese entscheidende Rolle gespielt haben soll, und wieso wir es bis jetzt noch nie bemerkt haben.
Ein vielversprechender Ansatz ist jedoch ein künstlich synthetisierter Ester, der sich selbst in einer Chloroformlösung kopieren kann. Er tut dies jedoch extrem exakt, so daß Mutationen fast ausgeschlossen sind, außerdem sind die Bedingungen, die seiner Entstehung und Weiterexistenz notwendig sind, sehr unwahrscheinlich.

Theorie der Coacervate
Alexander Oparin geht von einem völlig anderen Ansatz als die bisher genannten Theorien aus. Für ihn steht fest, daß die Proteine die Vorreiter des Lebens waren und die RNA sich erst später entwickelt hat. Rein chemisch klingt dieser Gedanke bereits bestechend logisch, da sich beim Miller-Versuch die Aminosäuren, die für Proteine benötigt werden, leichter bilden als die Nukleinbasen, Phosphate und Zuckermoleküle, die Bestandteile der RNA sind.
Allerdings muß eine ebenso eindeutige Erklärung für die Replikation der Proteine geboten werden. Als eigenständige Informationsspeicher sind Proteine relativ ungeeignet. Hier bringt Oparin seine Coacervattröpfchen ins Spiel. Die Coacervattröpfchen entstehen, wenn man ölige Flüssigkeiten in Wasser auflöst, so daß sie winzig kleine Klümpchen bilden. Diese Tröpfchen können zum Beispiel aus einem Gemisch aus einem Protein und einem Kohlenwasserstoff bestehen, wie bei den Versuchen von Oparin. Fügt man jetzt ein Enzym hinzu, daß Stärke bilden kann, sowie ausreichend Zucker, dann vermehren sich die kleinen Klümpchen und bilden identische Kopien ihrer selbst, indem sie sich teilen.
Allerdings ist nicht ganz klar, inwiefern dies jetzt die Entwicklung des Lebens demonstrieren soll. Die Vermehrung der Coacervattröpfchen hört nämlich sofort auf, wenn man die Zufuhr des Enzyms oder des Zuckers unterbindet. Oparin meinte offenbar, daß in der Ursuppe eine solche Zufuhr stets gewährleistet war. Er selbst hat sein Enzym jedoch aus einem heute lebenden Organismus gewonnen, es ist daher äußerst hoch entwickelt. Schwerer wiegt noch die Tatsache, daß die Tröpfchen keinen Informationsspeicher haben, daher nichts vererben können und somit auch nicht die Möglichkeit zur Evolution haben. Oparin ging davon aus, daß sich die RNA mehr oder weniger zwangsläufig im Laufe der Zeit bilden würde. Diese Sicht der Dinge läßt sich erklären, da Oparin seine Theorie aufstellte, noch bevor die DNA oder die RNA überhaupt entdeckt waren, weswegen er keine genaue Vorstellung vom genetischen Informationsmechanismus hatte.


Theorie der Proteinoide
Ähnlich wie Oparin sieht Sidney Fox die Entwicklung des Lebens. Wie Oparin weiß er, daß sich Aminosäureketten in Wasser lösen, statt Proteine zu bilden. Erhitzt man nun die Aminosäurelösung, so bilden die Aminosäuren nur eine teerige Masse. Anders als Oparin benutzt Fox aber keine Öltröpfchen, um seinen Aminosäuren Zusammenhalt zu gewähren. Er findet heraus, daß zusätzlich zu den "normalen" Aminosäuren noch eine der drei Aminosäuren Lysin, Asparaginsäure und Glutaminsäure nötig sind, um beim Erhitzen Stoffe ähnlich den Proteinen zu erzeugen.
Fox nennt seine Kreation Proteinoide (wir kennen sie bereits) und beginnt sie systematisch zu erforschen. Er stellt fest, daß auch sie enzymatische Reaktionen aufweisen, wenn man sie in Wasser löst (wo sie Mikrosphären bilden), auch wenn diese viel weniger spezifisch sind als die der Coacervattröpfchen - sie katalysieren so ungefähr alles (darunter auch sich selbst). Dafür ist aber auch kein hochspezialisiertes Enzym von außen notwendig. Fox verlangt hier also viel weniger unrealistische Bedingungen von der Urerde als Oparin.
Das Hauptproblem aller Theorien über den Beginn des Lebens durch Proteine bleibt jedoch: auch die Foxschen Proteinoide haben keinerlei genetischen Apparat, können keine Informationen an ihre Nachkommen übermitteln und können daher unmöglich eine Evolution durchmachen. Außerdem unterscheiden sie sich von den Proteinen, die wir heute kennen. Dennoch werden Mikrosphären und die in ihnen enthaltenen Proteine gerne als Ausgangspunkt des Lebens gesehen, meist in Verbindung mit der bereits erwähnten Entwicklung der Hyperzyklen.

Theorie vom Doppelursprung (Nukleotide und Proteine)
Bezüglich des Doppelursprungs des Lebens gibt es mehrere rivalisierende Theorien, die sich jedoch nur in Detailfragen unterscheiden.
Im Wesentlichen besagen sie alle das, was die einfachste Theorie, nämlich die von Robert Shapiro, aussagt: Es haben sich sowohl einfache autokatalytische RNA-Fragmente gebildet, ähnlich wie im Szenario von Gilbert, also auch einfache Proteine, wie zum Beispiel Foxsche Proteinoide. Jetzt nimmt Shapiro an, daß die Nukleotide nicht nur sich selbst, sondern auch Proteine replizieren konnten. Dafür muß die RNA nur wenige Nukleotidbasen aufweisen, da sie nur Aminosäuren erkennen muß. Auf diese Weise ist es gar nicht nötig, für einzelne Proteine zu codieren, es reicht, wenn die RNA Proteine, die sie braucht, vermehren kann, da diese ja schon vorhanden sind. Auf diese Weise ist auch eine Evolution der Proteine möglich, da die RNA ja Mutationen zuläßt. Die RNA bildet einen Hyperzyklus, wodurch sie zunehmend komplexer werden kann, bis sie schließlich eine so perfekte Protein-Umgebung hat, daß sie ihre eigene Replikation vernachlässigen kann, da die Proteine diese Aufgabe übernehmen. Die RNA hat wiederum die Fähigkeit gewonnen, für Proteine zu codieren. Alles andere, bis zur Entwicklung der ersten Zelle, ist danach nur mehr Sache der Evolution.

Lehmtheorie
Einen absolut anderen Weg als alle anderen Theorien wählt die Lehmtheorie. Auf die Frage "Was war zuerst da, Proteine oder Nukleotide?" antwortet die Lehmtheorie mit "Weder noch!"
Der Erfinder der Lehmtheorie, Cairns-Smith, empfindet Kohlenstoff als viel zu komplizierte Lösung für die Entstehung des Lebens. Ihm zufolge entwickelte sich das Leben aus lehmigen Kristallen, die ja auch nicht perfekt regelmäßig kristallisieren. Sobald ein Exemplar einmal eine etwas andere Struktur hatte, zum Beispiel durch mechanische oder chemische Fehler, konnte es durchaus sein, daß es besser für das "Überleben", sprich für das Weiterwachsen, geeignet war als ein Standardkristall. Die Weitergabe genetischer Informationen erklärt Cairns-Smith durch Substitutionsmuster auf der Oberfläche der Kristalle. Sie entstehen durch die Aufnahme anderer Ionen in das Kristallgitter und beeinflussen die Wachstumsfähigkeit nicht. Außerdem übernehmen spätere Schichten des Kristalls - die eventuell auch abbrechen und an anderer Stelle weiterwachsen können - dieses Muster. Mutation ist selbstverständlich auch möglich, womit für Cairns-Smith bereits alle Voraussetzungen für die Weiterentwicklung gegeben sind.
In diesem Stadium begannen die Kristalle irgendwann Kohlenstoffe in ihre Gitter einzubauen, die Ionenaufnahme, -absorption und mechanische Aufgaben besser erfüllten als die Kristallmoleküle. Schließlich übernahmen dann nach ihrer Entstehung autokatalytische RNA-Moleküle von ausreichender Komplexität und der Fähigkeit der Proteinsynthese ganz die Kontrolle, womit die veraltete Silizium-Lebensweise der neuen Kohlenstoff-Methode weichen mußte.
Die Cairns-Smith-Theorie ist reizvoll, weil sie keine Anfangsprobleme hat. Es sind keine Zufälle nötig, durch die sich erst Proteine oder Nukleinsäuren bilden müßten, sondern das Leben ist aus ganz gewöhnlichen chemischen Prozessen nach und nach hervorgegangen. Möglicherweise tut es das heute immer noch. Doch bis jetzt ist dieser Vorgang noch nie beobachtet worden, obwohl bereits Vorschläge für ein dem Miller-Versuch ähnliches Experiment mit Siliziumkristallen gemacht worden sind.

Theorie der Unterwasserwelt
John B. Corliss schwebt ein anderer Entstehungsort für das Leben vor als den meisten seiner Kollegen. Während es heute weitgehend akzeptiert ist, daß das Leben an der Oberfläche des Planeten entstand, verlegt Corliss die Entstehung tief auf den Grund des Meeres. Er gibt nicht genau an, wie diese Entstehung vor sich gegangen sein soll, oder wie er sich eine Lösung für das Henne-Ei-Problem vorstellt, aber er weist darauf hin, daß nahe den hydrothermalen Quellen auf dem Meeresboden genug Energie frei wird, um Leben ohne Sonnenschein zu ermöglichen. Tatsächlich lebt dort eine kürzlich entdeckte völlig neue Bakterienart, die sich in verschiedenen Merkmalen von allen bisher bekannten Bakterien völlig unterscheidet. Sie bilden eine eigene Gruppe und werden Archaebakterien genannt. Sie leben von den durch die hydrothermalen Schlote ausgeschiedenen Schwefelverbindungen und vertragen extreme Umweltbedingungen.
Allerdings sind die Bedingungen dort nicht sehr geeignet für die Entstehung des Lebens: in dem siedend heißen Wasser werden die notwendigen organischen Verbindungen eher zerstört als erzeugt. Daher sind viele Forscher der Ansicht, daß die dort lebenden Bakterien nicht dort entstanden, sondern zugewandert sind und sich angepaßt haben.

Pyrit-Theorie
Die Pyrit-Theorie greift das obige Szenario auf und will einen greifbaren Weg zur Entstehung des Lebens aufzeigen. In der nähe der hydrothermalen Quellen kann nämlich sehr leicht Pyrit, auch Katzengold genannt, aus Schwefelwasserstoff und Eisensulfid entstehen. Dabei wird auch genug Energie frei, um, so postuliert der Erfinder, Wächtershäuser, aus Kohlendioxid und Wasserstoff organische Moleküle zu bilden. Außerdem entsteht gleichzeitig auch Wasserstoff.
Die organischen Verbindungen sind jetzt aber, da sie negativ geladen sind, an die positiv geladene Oberfläche des Pyrit-Kristalls gebunden. Der wachsende Kristall versorgt sie auch weiterhin mit Energie. Nur diejenigen Verbindungen, die sich gut am Kristall halten können, überleben und können sich anhäufen. Schließlich entstehen in diesem Szenario Membrane und zellartige Gebilde, die irgendwann einmal weit genug fortgeschritten sind, um sich vom Kristall zu lösen.
Hier hat das Leben bereits wesentlich günstigere Voraussetzungen als in den meisten anderen Szenarien. Versuche haben ergeben, daß sich tatsächlich zumindest die postulierten chemischen Reaktionen abspielen, so daß diese Theorie durchaus im Bereich des Möglichen liegt. Es wurde auch ausgeführt, daß in diesem Stadium Thioester, welche schwefelhaltig sind und auch in heutigen Organismen noch beim Zellstoffwechsel eine wichtige Rolle übernehmen, dem frühen Leben als Energiequelle gedient haben könnten. Diese Thioester könnten später auch Protoenzyme gebildet haben, die als Katalysatoren agiert hätten. Auf diese Weise hätte schließlich auch RNA aufgebaut worden sein können, womit wir wieder beim Szenario der selbstreplizierenden RNA angelangt wären.


Theorie der Panspermie
Auch hier gibt es mehrere Theorien, die alle annehmen, das Leben wäre nicht auf der Erde, sonder im Weltraum oder auf anderen Planeten entstanden. Die einfachste, aber auch unbefriedigendste Theorie stammt von James Crick, der zufolge das Leben aus irgendeinem anderen Sonnensystem durch irgendeine extraterrestrische Ursache, wie etwa einen Kometeneinschlag, auf unsere Welt in Form von primitiven Sporen gekommen ist. Danach hätte es sich zu den heutigen Organismen weiterentwickelt. Dieser Ansatz wurde jedoch nicht einmal von Crick selbst ernst genommen, da er das eigentliche Problem - die Entstehung des Lebens als solches - überhaupt nicht beantwortet, sondern nur in die Weite des Alls verlagert.
Die andere Sorte von Theorien, sieht auch eine auf der Erde landende Spore vor, allerdings soll sie nicht von Planeten, sondern aus dem tiefen Raum kommen. Der bevorzugte Bildungsort ist eine interstellare Gaswolke. Die besten Vertreter dieser Gattung von Theoretikern sind Hoyle und Wickramasinghe. Ihre Methode ist ebenso typisch: man stelle einer Liste von für das Leben nötigen Substanzen auf, analysiere ihre Spektraldaten und passe dann Meßergebnisse von Weltraumgaswolken den eigenen Ergebnissen diskret an. Schon hat man den Beweis, daß alles, was das Leben braucht, auch da draußen vorkommt. Jetzt braucht man nur noch zu postulieren, daß sich in diesen Wolken spontan komplexe Moleküle bildeten, die den Grundstein für das Leben legten, sich Moleküle seiner Wahl aussuchen und die persönliche Theorie über die Entstehung des Lebens im Weltraum ist komplett. Einige ernstzunehmendere Wissenschafter haben ähnliche Theorien aufgestellt, wonach das Leben durch Kometen auf die Erde gekommen sein soll. Tatsächlich hat man in verschiedenen Meteoriten und Kometen organische Verbindungen, wie sie zur Entstehung des Lebens notwendig sind, nachweisen können.
Hoyle und Wickramasinghe haben aber auch noch eine zweite Theorie aufgestellt, die das Maximum der Unwahrscheinlichkeit darstellt. Sie ist wohl auch eher unter theologischen Gesichtspunkten zu betrachten. Kurz und bündig lautet sie: Alle möglichen Moleküle in einer Gaswolke sammelten sich zu einem interstellaren Siliziumchip mit nahezu göttlicher Macht, der dann das Leben erschuf. Insgesamt sagt die Theorie mehr über die Verfasser als über die Entstehung des Lebens aus.

Mögliche Hindernisse der genannten Theorien
Sämtliche Theorien (von den eher esoterischen einmal abgesehen) basieren selbstverständlich auf unserem derzeitigen Wissensstand über den früheren Entwicklungszustand der Erde. Aber selbst hier werden in letzter Zeit kritische Stimmen laut, die der vorherrschenden Meinung widersprechen.
Es wird zum Beispiel von verschiedenen Wissenschaftern bezweifelt, ob die Uratmosphäre tatsächlich die erwartete Beschaffenheit hatte. Viele Forscher sind der Ansicht, daß sie bei weitem nicht so reduzierend war wie bisher angenommen. Sie postulieren, daß viele der angeblich so zahlreichen wasserstoffhaltigen und damit reduzierenden Verbindungen zu schnell wieder zerstört wurden, um dem Leben auf die "vorgesehene" Weise zu helfen. Fest steht nämlich: früher gab es keine schützende Ozonschicht, wodurch der volle UV-Anteil der Sonne auf die Erdoberfläche traf. Diese UV-Strahlen haben aber leider die Tendenz, wasserstoffhaltige Verbindungen zu zersetzen. Es wäre also zwar viel mehr freier Wasserstoff entstanden, doch dieser hätte sich nicht halten können und wäre bald ins Weltall entwichen.
Sollte dieses Szenario tatsächlich der Fall gewesen sein, so hätte die Uratmosphäre wohl hauptsächlich aus Kohlendioxid und Stickstoff bestanden. Anders als eine reduzierende Atmosphäre ist dieses Gemisch sehr reaktionsträge und damit der Entstehung des Lebens überhaupt nicht förderlich. Außerdem begünstigt Kohlendioxid natürlich den Treibhauseffekt. Computerberechnungen haben ergeben, daß die Temperatur der Erdoberfläche unter den angenommenen Bedingungen durchaus an die 100 Grad Celsius erreicht haben könnte. Wie sich unter diesen Umständen überhaupt Urozeane, geschweige denn eine Ursuppe gebildet haben könnte, läßt sich nur schwer vorstellen.
Verteidiger der vorherrschenden Meinung glauben jedoch, daß die ungünstige UV-Strahlung durch Rauchschwaden und Wolken ausreichend abgeschirmt werden könnte. Und davon gab es damals sicher reichlich, da Vulkanausbrüche an der Tagesordnung waren.
Auf der anderen Seite findet ein Großteil der Theorien Bestätigung, je mehr Lebewesen genetisch erforscht werden. So weist die Tatsache, daß alle Lebewesen nur linkshändige Aminosäuren zur Bildung von Proteinen akzeptieren, obwohl beim Miller-Versuch in gleichem Verhältnis rechts- und linkshändige Aminosäuren entstanden, darauf hin, daß nur eines oder sehr wenige Lebewesen der Ursprung allen heutigen Lebens sind - es sei denn, linkshändige Aminosäuren werden aus irgendeinem Grund bei der Entstehung des Lebens bevorzugt. Genauso verhält es sich bei den Nukleotiden, die bei der Bildung allen genetischen Materials verwendet werden: nur rechtshändige werden dazu benutzt.

 
 

Datenschutz
Top Themen / Analyse
Arrow Supermodell - Fette Kuh - Der Schlankheitswahn unserer heutigen Gesellschaft
Arrow Fledermäuse artikel
Arrow Brandschutzbeauftragter
Arrow Amphetamine, XTC, MDMA
Arrow Wo und wie wirkt Alkohol?
Arrow DIE BABENBERGER
Arrow Allgemeine Muskellehre
Arrow Kunststoffe---
Arrow Abtreibung artikel
Arrow Rauchen -


Datenschutz
Zum selben thema
icon Verdauung
icon Drogen
icon Pubertät
icon Enzyme
icon Erbkrankheiten
icon Rauchen
icon Luft
icon Immunsystem
icon Parasit
icon Verdauung
icon Gedächtnis
icon Ökosystem
icon Genetik
icon Biotop
icon Radioaktivität
icon Hygiene
icon Gehirn
icon Tier
icon Botanik
icon Pflanzen
icon Gen
icon Chromosomen
icon Lurche
icon Depression
icon Dinosaur
icon Infektion
icon Auge
icon Allergie
icon Alkohol
icon Insekte
icon Herz
icon Proteine
icon Wasser
icon Ozon
icon DNA
icon Ökologie
icon Spinnen
icon Blut
icon Klonen
icon Hepatitis
icon Fotosynthese
icon Krebs
icon Hormone
icon Schmerz
icon Fortpflanzung
icon Röteln
icon Mutationen
icon Diabetes
icon Antibiotika
icon Eiweißsynthese
icon Körper
A-Z biologie artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution