Wie schon erwähnt können Schallwellen entweder in Gasen, in Flüssigkeiten oder in Festkörpern auftauchen. Wobei sich die Schallwellen in Gasen und Flüssigkeiten hauptsächlich darin unterscheiden, daß die Schallgeschwindigkeit äußerst unterschiedlich ausfällt, was aus der Formel [4] hervorgeht. Durch den hohen Kompressionsmodul K, der gegenüber der Dichte einen deutlich höheren Wert haben wird, ist die Schallgeschwindigkeit der Dichtewellen in Flüssigkeiten im allgemeinen höher als in Gasen. Der Kompressionsmodul ergibt sich aus p [4], wobei das Verhältnis der spezifischen Wärmen bei konstantem Druck und konstantem Volumen (Adiabatenkoeffizient) und p den Druck darstellt. Aus der Schallgeschwindigkeitsformel ist auch zu erkennen, daß eine starke Abhängigkeit von der Dichte vorhanden ist, also in verschieden Gasen oder Flüssigkeiten auch andere Schallgeschwindigkeiten herrschen müssen. Die Schallgeschwindigkeit kann man ebenfalls über die Formel ermitteln. Allerdings ist die Wellenlänge in Gasen und meist auch in Flüssigkeiten etwas schwer zu bestimmen.(siehe S.14) Sonst ist das Betrachten der Schallwellen in Flüssigkeiten und Gasen nahezu gleich. In beiden sind die Scherkräfte, zu vernachlässigen, da sie verschwindend gering sind. Es sind nur longitudinale Dichtewellen zu beobachten. Hierbei ist zu beachten, daß die Oberfläche einer Flüssigkeit eine Ausnahme darstellt. Denn an ihr können auch Transversalwellen entstehen, da es dort den Flüssigkeitsmolekülen möglich ist die Oberflächenform zu verändern und damit Schwingungen, die für Transversalwellen nötig sind, entstehen zu lassen. In Festkörpern verändert sich die Schallgeschwindigkeit nicht mehr abhängig vom Kompressionsmodul, sondern vom Elastizitätsmodul. Es können in festen Körpern außer Longitudinalwellen wie Dehnwellen auch Transversalwellen wie Schub- oder Biegewellen auftreten, die nicht nur vom Stoff abhängen sondern auch von der Form abhängig sein können. Um die Schallgeschwindigkeit in Festkörpern zu bestimmen ist die oben verwendete Formel nicht mehr anzuwenden. Die Geschwindigkeit des Schalls in Festkörpern muß man für jede Wellenart (Dehn-, Biege-, ...wellen) anders ausrechnen, wobei die Berechnung, wie sich noch zeigt, sehr komplex werden kann. Bei diesen Berechnungen ist vor allem das Elastizitätsmodul E und meist die Poisson-Zahl zu berücksichtigen. Das Elastizitätsmodul E entsteht wie folgt: Wenn ein Draht mit der Länge und dem kreisförmigen Querschnitt A um das Stück gedehnt wird, so wird eine Kraft F und eine mechanische Spannung benötigt. Daraus ergeben sich folgende Formeln:
Elastizitätsmodul [4], wobei die Spannung ist, also
Durch die Kontraktion des Drahtes verändert sich auch der Durchmesser um .
Hier kommt man dann zur Poisson-Zahl, die eine Art Verhältnis zwischen Dehnung und Kontraktion darstellt. Sie schließt somit alle Formveränderungen von Querkontraktionen ein und bildet einen konstanten Wert, der die Kontraktions- und Dehnfähigkeit eines Stabes bestimmt:
Poisson-Zahl [4]
Treten in einem Körper keine Querkontraktionen auf ist .
Am einfachsten zu beschreiben ist dabei noch die Geschwindigkeit einer Dehnwelle, also eine Ausbreitungsgeschwindigkeit eines Impulses in einem Stab ohne das Querkontraktionen ausgelöst werden, sie ist longitudinal: [4]. Diese Wellen treten oft in Stäben mit geringem Durchmesser auf, da in ihnen Querkontraktionen nicht begünstigt werden. Bei Dehnwellen in Stäben mit größeren Durchmessern (oder auch allgemein unendlich ausgedehnten Körpern) können zusätzlich Querkontraktionen ausgelöst werden, was bedeutet, daß sich der Querschnitt und die Länge des Stabes ändert. Bei ihnen muß deshalb die oben angeführte Poisson-Zahl einfließen. Sie läuft mit [4]. Die transversale Schubwelle muß nun mit der Formel der Geschwindigkeit transversaler Wellen in Festkörpern behandelt werden. Diese lautet [2], wobei G für das Torsionsmodul steht, welches man mit [2] umschreiben kann. So kommt man zu der Formel: [4]. Am kompliziertesten verhält sich die Biegewelle. Sie wird zusätzlich noch von der Form der Querschnittsfläche des Stabs beeinflußt. Bei einem rechteckigen Querschnitt mit der Höhe läuft die Welle mit der folgenden Geschwindigkeit: [4]. Diese Formel wird nur der Vollständigkeit halber aufgeführt und wird nicht weiter verdeutlicht, da dies zu komplex werden würde.
|