Zum Verständnis der Supraleitung ist es erforderlich, Leitungsvorgänge in normalen Metallen zu betrachten. Legt man an einen Draht eine Spannung an, so setzen sich Elektronen in Bewegung, ein Strom fließt. Der Widerstand des Drahtes kommt durch Streuung der Elektronen an Störstellen ( Fremsatome oder Deffekte der Kristallstruktur) im Metall zustande. Ein weiteres \"Hindernis\" für die Elektronen sind die Schwingungen der Atomkerne ( Phononen ). Die Wechselwirkung zwischen dem Elektron und den Schwingungen der Atomkerne ( Phononen-Wechselwirkung ) ist eine der fundamentalen Ursachen für den elektrischen Widerstand bei höheren Temperaturen. Diese Wechselwirkung kann aber andererseits zu einem qualitativ anderen Zustand der Elektronen führen.
Dabei arrangieren sich die Elektronen mit dem schwingenden Kristallgitter so, daß sie nicht gestreut werden. Die elektrostatische Abstoßung zwischen bestimmten Elektronenpaaren wird überwunden und sie ziehen sich gegenseitig an, es werden sogenannte supraleitende Cooper-Paare gebildet. Der Übergang von einem normalen Leiter zum Supraleiter stellt einen Phasenübergang dar, einen neuen Kristallzustand. Das Besondere an der Supraleitung ist nun, daß es sich dabei um ein makroskopisches Phänomen handelt. Alle Cooper-Paare sind Teil desselben quantenmeschanischen Zustands, sie sind voneinander abhängig. Wird eine Spannung angelegt, so bewegen sich alle Cooper-Paare in gleicher Weise.
Würde ein Cooper-Paar gestreut, so würden auch alle anderen gestreut werden. Somit fließt der Strom aus Cooper-Paaren ohne Widerstand. Wird die Bindungsenergie der Cooper-Paare durch Energieerhöhung überschritten, so stellt sich wider der normalleitende Zustand ein. Dies kann z.B. durch ein starkes Magnetfeld oder durch Überschreiten der maximalen Stromdichte geschehen.
|