Sterne mit mehr als acht Sonnenmassen haben kaum Probleme mit der Entartung ihrer Kerne. Sie leiten immer neue Brennphasen ein und erzeugen immer schwerere Elemente. Bei Sternen über 30 -Sonnenmassen wird dabei durch den reinen Photonendruck von innen oft die gesamte Hülle weggeblasen, bevor eine neue Brennphase eingeleitet werden kann. Alle Sterne, die über acht Sonnenmassen haben, durchlaufen ihre Entwicklung in Zeitraffer. Sie brennen wenige Millionen Jahre Wasserstoff, dann geht es immer schneller. Dabei strahlen sie mit Tausenden oder gar Millionen von Sonnenleuchtstärken. In späteren Brennphasen werden nicht mehr hauptsächlich Photonen, sondern Neutrinos emittiert, um die Energie abzustrahlen.
Dies alles hat aber ein Ende, sobald der Stern seine letzte Brennphase vollendet hat: die Fusion von Silizium zu Eisen. Er strahlt aber durch seine hohe Temperatur weiterhin viele Neutrinos ab, und die Gravitation wirkt aufgrund seiner hohen Masse noch stärker als bei masseärmeren Sternen. Er kollabiert also rasend schnell, wodurch die Temperatur in seinem Inneren weiter ansteigt. Zwei Prozesse bewirken aber eine Beschleunigung des Kollaps: zum einen führt die extreme Dichte zu inversen Beta-Zerfällen, wobei die Atome also Elektronen aufnehmen. Da die Elektronen hauptsächlich für den Druck verantwortlich sind, sinkt dieser dadurch. Zum anderen können bei Temperaturen von 10 Milliarden K Photonen im Stern so energiereich werden, daß sie die Eisenatome in Fragmente spalten. Da Eisenatome stabiler sind als alle übrigen, wird dadurch Energie verbraucht. Auf diese Weise stürzt der Stern rasend schnell in sich zusammen.
Schließlich erreicht er dabei jedoch einen kritischen Punkt: die Dichte wird so groß, daß sie der von Atomkernen entspricht. Die Atomkerne berühren sich also praktisch, und der Stern läßt sich schlagartig nicht weiter zusammendrücken. Dies geschieht natürlich im Zentrum, wobei jedoch der Rest des Eisenkerns weiter auf diese Zentralregion zurast. Mit voller Wucht prallt er darauf und wird sogleich wieder nach außen geschleudert. Eine gigantische Stoßwelle durchläuft nun den Eisenkern, sie reißt alle Materie mit sich und läßt die Hülle in einer unglaublichen Explosion auseinanderschießen. Dieses Ereignis nennt man Supernova.
Der zentrale Kollaps dauert nur Millisekunden, die Schockwelle erreicht bereits nach wenigen Stunden die Sternoberfläche. Während der ersten Sekunde einer Supernova strahlt der Stern soviel Energie ab wie alle anderen Sterne des Universums zusammen, also etwa 100 Trillionen mal soviel wie jeder andere Stern. Für einige Monate leuchtet eine Supernova zigtausendmal heller als die hellsten Sterne.
Rein statistisch sollte alleine in der Milchstraße etwa alle 30 Jahre eine Supernova explodieren. Es wurden auch schon viele in der Geschichte der Menschheit beobachtet, die letzte davon 1987. Bei dieser konnte man bereits Neutrinos nachweisen, die eindeutig von dieser Supernova stammen.
|