Albert Einstein, einer der größten Physiker unserer Geschichte veröffentlichte 1916 seine Gravitationstheorie, die "Allgemeine" Relativitätstheorie, die ihn bis heute einzigartig macht. Jedoch war die Allgemeine Relativität keine Reaktion auf irgendein besonderes Rätsel. Getrieben von mehr als dem Wunsch, konkrete Beobachtungen zu erklären, suchte Einstein nach Einfachheit und Einheitlichkeit. Während Newton die Gravitation als eine Kraft verstand, die augenblicklich zwischen zwei Körpern übertragen wird - eine Sichtweise, die eindeutig nicht mit der Geschwindigkeitsbegrenzung bei der Ausbreitung von Signalen vereinbar ist -, forderte Einstein, dass sich im Gravitationsfeldern die Krümmung des Raumes selbst offenbart. Massen "üben" keine Anziehungskraft "aus" und lenken Körper von einer geraden Bahn ab, sondern ihre Gegenwart verzerrt den Raum in ihnen und um sie herum. Laut der Allgemeinen Relativität folgen Körper, die sich durch den Raum bewegen, dem geradesten Weg, der in einem Verbund aus Raum und Zeit, der sogenannten "Raumzeit", möglich ist. Doch wenn der Raum verzerrt ist, werden diese zu gekrümmten und beschleunigenden Bahnen, die wir als Reaktion auf eine Kraft interpretieren könnten. Um es mit den Worten des bekannten Relativisten John Archibald Wheeler auszudrücken: "Der Raum sagt der Materie, wie sie sich bewegen und die Materie dem Raum, wie er sich krümmen soll."
Wäre Einstein nicht gewesen, so hätte es noch Jahrzehnte dauern können, bis man zu einer ebenso umfassende Theorie der Gravitation gelangt wäre. Einsteins Kreativität hat der modernen Physik einen einzigartig individuellen und dauerhaften Stempel aufgedrückt.
Einsteins Allgemeine Relativitätstheorie spielt eine wichtige Rolle in der Astronomie und Weltraumforschung. Bei Neutronensternen und Schwarzen Löchern stehen die charakteristischen Kennzeichen der Allgemeinen Relativität im Mittelpunkt und sind nicht nur unbedeutende Modifikationen der Newtonschen Theorie. Diese Objekte bieten die Möglichkeit, Einsteins Theorien auf neue Weise zu überprüfen.
Aus relativistischer Sicht kann die Stärke eines Gravitationsfeldes ausgedrückt werden durch das Verhältnis der Geschwindigkeit, die zum Verlassen des Feldes nötig ist(die in Zusammenhang mit der Weltraumforschung häufig diskutierte "Entweichgeschwindigkeit"), zur Lichtgeschwindigkeit, jeweils zum Quadrat genommen.
v2 = 2 GM/R (v |