Drei Aggregatszustände gebe es, so lernen wir in der Schule: fest - flüssig - gasförmig. Und wenn der Physiklehrer ambitioniert ist, deutet er an, dass es noch einen vierten Zustand gibt: das Plasma. Jeder Stoff kann in ein Plasma überführt werden, was gar nicht so geheimnisvoll ist, wie es sich anhört: Man zünde sich eine Kerze an. In der Flamme trennen sich Elektronen von ihren Atomen, zurück bleiben elektrisch geladene "Ionen\". Bei der Hitze stoßen Elektronen und Ionen sowie Ionen mit Ionen ständig zusammen, was eben den Plasma-Zustand charakterisiert. Weitere Beispiele für Plasmen finden sich in Leuchtstoffröhren und Explosionen, Gewitterblitzen und der Ionosphäre in der oberen Lufthülle. Grundsätzlich kann man sagen, dass bei jeder Entladung ein, wenn auch kurzzeitiger Plasmazustand auftritt. Die Bezeichnung "Plasma" wurde Ende der zwanziger Jahre erstmals von Langmuir für einen Teil einer Niederdruckentladung verwendet.
Während auf der Erde die Bedingungen normalerweise ziemlich extrem sind, unter denen sich Plasmen bilden, ist im Weltall der vierte Zustand der Regelfall. 99 Prozent von dem, was wir dort sehen - die Sterne und die interstellaren Nebel - besteht aus Plasmen. Und noch auf einem weiteren Gebiet ist Plasmaphysik wichtig: In Fusionsreaktoren wird versucht, eine ebenso große Hitze, wie sie im Inneren der Sonne ist herzustellen. Ob dies gelingen wird, hängt unter anderem von den Auswirkungen bisher unzureichend verstandener mikroskopischer Reaktionen bei Ion-Ion- und Ion-Elektron-Stößen im Plasma ab. Vom Verständnis dieser Reaktionen hängt womöglich die Energieversorgung der Zukunft ab.
Wer Stöße von Ionen mit Ionen oder von Elektronen mit Ionen untersuchen will, kann es sich leider nicht so einfach machen und eine Kerze anzünden. In der Flamme läuft eine Vielzahl verschiedenster Reaktionen ab, während das Interesse des Atomphysikers ist, möglichst jeden Reaktionstyp einzeln präparieren und untersuchen zu können. Das soll angeblich in Instituten für Kernphysik durch langjährige Entwicklung von Messverfahren gelungen sein, die auf der Überlagerung sauber präparierter Strahlen geladener Teilchen, eben von Ionen und Elektronen, beruhen. Eine besondere Spezialität der Schwerionenphysiker ist dabei der Einsatz hochgeladener Ionen, die durch Ablösung mehrerer oder gar aller Elektronen eines Atoms erzeugt werden. Solche hochgeladenen Ionen treten in natürlichen und künstlichen Plasmen auf, die durch energiereiche Elektronen oder durch Röntgenstrahlung ionisiert werden. Ihre Existenz wurde in den dreißiger Jahren durch intensive Beobachtung der Sonne und speziell der Sonnenkorona entdeckt.
In Experimenten mit gekreuzten Strahlen aus mehrfach geladenen Ionen und Elektronen wurden ab 1977 weltweit zum ersten Mal am Strahlenzentrum Ionisationsprozesse untersucht, bei denen einem bereits mehrfach geladenen Ion weitere Elektronen entrissen werden. Dies markierte den Beginn einer bis heute äußerst fruchtbaren Erforschung der physikalischen Prozesse, die in Elektronenstößen zur Erzeugung hochgeladener Ionen führen. Ab 1981 begann man mit den Erforschungen von Ion-Ion-Stoßprozessen in Deutschland. Das Hauptproblem bei allen Experimenten mit Strahlen geladener Teilchen, seien es Ionen oder Elektronen, war zunächst einmal technischer Art, nämlich die Herstellung eines wirklich leeren Raums, sprich die Erzeugung von Ultrahochvakuum. Andernfalls ertrinkt der Experimentator in einer Flut von Untergrundsignalen, so wie das Zwitschern eines Vogels im Hintergrundlärm beim Start eines Jumbojets untergeht.
Der Aufbau der neuen Ion-Ion-Streuapparatur stand in den Gründzügen bis 1983. Nach einiger Zeit war die Messtechnik soweit entwickelt, dass die ersten Ion-Ion-Stöße nachgewiesen werden konnten. Die ersten Fusionsreaktoren waren vorerst sehr klein und der nötige Vakuumzustand konnte kaum erreicht werden. Ein Zusammenstoß von einem Ion mit einem anderen Ion war nur schwer messbar.
Stöße zwischen Elektronen und Ionen markieren den Beginn der Atomphysik etwa 700.000 Jahre nach dem Urknall. Als sich das frühe Universum auf etwa 4000 Grad abgekühlt hatte, konnten sich Elektronen und Ionen erstmals dauerhaft zu Atomen zusammenfügen. Insbesondere kombinierten positiv geladene Protonen - die einfachste Form von Ionen - mit negativ geladenen Elektronen und formten so Wasserstoff, das einfachste aller Atome. Heute - mehr als ein Dutzend Milliarden Jahre später - liegt der größte Teil der sichtbaren Materie im Universum wieder als ionisiertes Plasma vor mit freien Ionen und Elektronen, häufig bei hohen Temperaturen. Aber auch die kalten interstellaren Leuchtnebel bestehen aus Plasma. Stöße zwischen Ionen und Ionen sowie Ionen und Elektronen gehören somit zu den fundamentalen Reaktionen, die die Entwicklung des Weltalls regieren. Näher an die Erde führen Phänomene wie die Sonnenkorona und die Ionosphäre über unserer Lufthülle.
Der kurzwellige Anteil des Sonnenlichts ionisiert in den oberen Schichten der Atmosphäre Atome, wobei zuerst einmal Elektronen und positive Ionen entstehen. In großen Höhen ist die Intensität der Strahlung sehr groß, aber die Gasdichte sehr klein, so dass nur wenige Ionen und Elektronen gebildet werden. Auch in den unteren Schichten der Atmosphäre ist die Ionisierungsrate klein: Dort ist zwar die Dichte an Atomen und Molekülen groß, aber die harte, energiereiche UV-Strahlung wurde in den darüber liegenden Schichten der Atmosphäre fast vollständig absorbiert. Zwischen diesen Bereichen gibt es eine Schicht, in der sowohl die Gasdichte als auch die Intensität der Strahlung so hoch ist, dass die Ionisierungsrate ihr Maximum erreicht. In 200 bis 400 Kilometer Höhe trifft man auf die höchste Elektronendichte mit bis zu einer Million freier Elektronen pro Kubikzentimeter. Nachts, wenn die Sonneneinstrahlung fehlt, geht die Dichte freier Elektronen je nach Höhe über der Erde bis auf fünf bis zehn Prozent des Tageswertes zurück. Im Dunkel der Nacht fangen dann Atome und Moleküle sowie deren positiv geladene Ionen frei bewegliche Elektronen ein. Moleküle brechen auf, negative Ionen entstehen und neutralisieren sich in Stößen mit positiven Ionen. Erst mit dem neuen Morgen beginnt wieder die Ionisationspumpe der Sonnenstrahlen die Ladungsträgerdichte zu erhöhen, und das Spiel beginnt von neuem.
|