Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


informatik artikel (Interpretation und charakterisierung)

Cpu

Amd, intels konkurrenz kann nicht mehr mithalten8


1. Java
2. Viren

Intel zieht mit dem neuen Pentium 4 3.066 Ghz davon. Auf nimmer Wiedersehen, könnte man meinen, wenn man bedenkt, das AMD erst jetzt mit CPUs herausrücken, die die 2-Ghz-Grenze durchbrechen. Daran wird sich auch so schnell nichts ändern.
In diesem Kapitel werde ich von den aktuellen Prozessoren aus dem Hause Advanced Micro Devices berichten: die technologische Beschaffenheit, auch wenn es da nicht viel Neues gibt und die Performance der CPUs ansprechen. Anschließend kommen wir noch zu Zukunfts-Projekten des Hauptkonkurrenten von Intel, weil sich dort eine Kehrtwende abzeichnet. Aber zunächst ein kleiner Blick in die Entwicklung des Athlon.


Der AMD Athlon - die Historie

Der Athlon hat eine lange Geschichte hinter sich - im Endeffekt ist dieser Prozessor AMDs Erfolgsstory. Während man vor diesem Prozessor hauptsächlich Intel-Clones hergestellt hat, die sowohl im Busprotokoll wie auch in der Arbeit sich an den Modellen der Konkurrenz orientierte, hat man mit dem Athlon die erste Eigenentwicklung auf den Markt gebracht, die sich signifikant von den Prozessoren aus dem Hause Intel abhoben. Und man hatte Erfolg - der von Intel produzierte Pentium III hatte einige deutliche Nachteile gegenüber dem ersten K7-Prozessor : Unter anderem war die Floating-Point Einheit des AMD Athlon eindeutig überlegen, zum anderen hatte der AMD-Prozessor den neuen EV6-Bus für den Prozessor ausgesucht, der mit einer Bandbreite von zunächst 1.6 GB/s bei 100 Mhz FSB und Double-Data-Rate-Verfahren dem mit 133 Mhz betriebenen Bus des Pentium III mit 1.06 GB/s überlegen war. AMDs Kalkulationen waren also aufgegangen - man hatte einen Prozessor auf den Markt gebracht, der schneller war, als der vergleichbare Intel-Prozessor.

Es folgte ein Rennen um die Performance-Krone, an das sich sicherlich alle User erinnern - gerade die 1 Ghz-Grenze wollten die beiden Konkurrenten als erster erreichen, hier hatte AMD erstmals in der Firmengeschichte die Nase vorne. Währenddessen hatte man den 0,25micron-gefertigten ersten Athlon durch einen 0,18micron-gefertigen Slot A-Athlon ersetzt - der Thunderbird-Prozessor hatte auch einen nun integrierten Cache, der nicht mehr nur mit der Hälfte oder einem Drittel des Prozessortaktes betrieben worden ist, sondern mit der vollen Taktfrequenz. Dadurch ließ sich die Pro-Mhz-Leistung weiter steigern - und AMD konnte den Prozessor nicht nur im teuren Slot-Format anbieten, sondern auch einen Sockel-Prozessor produzieren.

Nach dem Sprung über die 1 Ghz-Grenze gab es für Intel zunächst einen weiteren Rückschlag : Den 1.13 Ghz Pentium III musste man aufgrund von Stabilitätsproblemen zunächst zurückziehen, was AMD weiteren Nährboden für Marktanteile brachte. Mittlerweile waren viele User auf AMD umgestiegen, unter anderem auch viele Freaks des Overclockings, da sich AMDs Prozessoren aufgrund der besseren und flexibleren Übertaktbarkeit und des günstigen Preises besonders interessant gestalteten.

AMD setzten einen drauf : Es kam der 133 Mhz EV6-Prozessor und somit konnte man die Anbindung zum Prozessor auf 2.1 GB/s steigern. Und Intel hatte mit den nächsten Problemen zu kämpfen - der neue Pentium 4 mit Willamette-Kern hatte eine niedrige Pro-Mhz-Leistung trotz überlegenem 3,2 GB/s Bussystem, er war teuer, schwer zu kühlen und konnte nur mit teurem RDRAM richtig auf Touren gebracht werden. Schließlich konnte AMD auch noch von DDR-SDRAM profitieren - mittlerweile zum Standard geworden machte sich AMD stark für diese Technologie, von der der Prozessor effektiv profitieren konnte, da mit DDR266 eine zum EV6-Bus equivalente Bandbreite geschaffen werden konnte.

Einer der meistverkauften AMD-Prozessoren wurde schließlich der mit dem Codenamen Palomino betitelte Prozessor. AMD fügte zum Thunderbird eine SSE-Einheit hinzu, um mit diesem Intel-Befehlssatz attraktiver für Optimierungen der Programmierer zu werden. 3DNow, als Befehlssatz seit der Einführung vorhanden, war zwar immer noch vorhanden, schien aber das Rennen gegen Intel´s Befehlssätze zu verlieren. Dank weiterer Optimierungen im Kern - beispielsweise eines leistungsfähigen Prefetch Mechanismus, konnte man die Pro Mhz-Leistung weiterhin nach oben schrauben, aber man hatte jetzt einen leistungsfähigen Konkurrenten bekommen - den Northwood von Intel, einen in 0,13micron-Fertiung hergestellten Pentium 4 mit 512 kb L2-Cache, der leicht zu kühlen war und vor allen Dingen schnell hohe Frequenzen erreichte. Also musste man die immer noch bessere Pro-Mhz-Leistung herausstellen und etablierte für den Palomino-Kern ein Quantispeed-Rating für den neuen mit dem Namen Athlon XP bekannten Prozessor.

Ab jetzt begann es für AMD schwierig zu werden - Intel konterte mit immer schnelleren Modellen und konnte Dank der in den Köpfen vorhandenen Einstellung \"Mhz ist besser\" wieder besser auftrumpfen. Auch gab es mittlerweile günstigere Chipsätze, die DDR-SDRAM nutzten und somit auch für den normalen Anwender attraktiver wurden. AMD konnte hingegen die Taktfrequenzen nicht so schnell steigern - die 0,18micron-Fertigung machte Frequenzen über 1800 Mhz schwierig, während Intel ohne Probleme Prozessoren mit 2.53 Ghz herstellte.

Heute vorherrschend sind vor allen Dingen Prozessoren mit Palomino-Kern, allerdings hat AMD vor kurzem den Aufsprung auf die 0,13micron-Fertigung geschafft. Der neue Kern ist mit dem Codenamen Thoroughbred betitelt und ist technisch zum Palomino-Kern identisch. Der einzige Thoroughbred-Prozessor ist der Athlon XP2200+ mit einer Taktfrequenz von 1800 Mhz und er wird es auch bleiben, da der Prozessor sich trotz 0,13micron-Fertiung schlecht auf höhere Frequenzen treiben ließ - es musste ein neues Stepping her, welches mit höheren Frequenzen arbeiten konnte. Das kostet natürlich Zeit - diese Zeit nutzte Intel mit dem 2.8 Ghz Pentium 4, man zog also weiter davon.

AMDs aktueller Kern

Der Thoroughbred-Kern ist also AMDs aktueller Kern für den Athlon XP, der für Prozessoren über 1.8 Ghz verwendet wird. Was hat AMD jedoch vom Athlon XP2200+ mit 1800 Mhz zu den Modellen ab dem Athlon XP2400+ mit 2000 Mhz geändert ?

AMD Athlon XP2400+
und höher AMD Athlon XP 2200+ AMD Athlon XP 2100+
und kleiner
CPU-Kern Thoroughbred-B Thoroughbred-A Palomino
CPU-ID Model 8 Model 8 Model 6

Die-Größe 84 mm² 80 mm² 128 mm²
Transistoren 37,6 Mio. 37,2 Mio. 37,6 Mio.

typische
Corespannungen 1,65V 1,65V 1,75V

Die-Layer 9 8 7


Erkennbar für den User sind die Veränderungen beispielsweise bei einem Diagnose-Tool wie WCPUID. Dieses Tool berichtet einem, das es sich bei den neuen Thoroughbred-Modellen um einen CPU mit der ID-Nr. 8 handelt - die beiden Thoroughbred-Kerne kann das Programm allerdings nicht unterscheiden, da AMD die CPU-ID für beide Prozessoren identisch belassen hat. Verändert hat man allerdings einiges an dem Kern, um höhere Taktfrequenzen zu erhalten - zwar hat man nicht wie üblich an der Spannung gedreht, aber durch Optimierungen im Kern einiges erreicht. Da der Die ein paar zusätzliche Transistoren unterbringen muss, ist die Die-Größe etwas angestiegen. Diese beeinflussen jedoch nicht die Performance des Athlons. Auch die Die-Layer wurden von 8 auf 9 erhöht - das wirkt sich leider auf die Komplexität eines Chips aus. Zwar gilt im CPU-Bereich nicht die Regel \"ein Layer mehr = doppelte Produktionskosten\" wie aus dem Mainboardbereich, aber die Produktionskosten steigen auch hier auf Grund der höheren Komplexität.
Ansonsten hat sich nichts geändert : Der Thoroughbred hat weiterhin 128 kB L1-Cache, der in 64 kB Instruktions- und 64kb Datencache aufgeteilt ist. Weiterhin stehen 256 kB L2-Cache zur Verfügung - hier wird erst der Barton-Kern einen größeren Cache besitzen und damit die Pro-Takt-Leistung weiter erhöhen. Auch an der Architektur hat sich nichts geändert - es befinden sich jeweils 3 ALU-Einheiten und 3 FPU-Einheiten im Kern, SSE wird ebenso unterstützt wie AMDs 3DNow! Professional, der Prozessor unterstützt Data-Prefetching und auch einen Translation Lookaside Buffer (TLB),
Nichts Neues also in diesem Bereich für den User, jedoch für die Produktion, die AMD für höhere Frequenzen optimiert hat. So erreichen Thoroughbred-B-Prozessoren auch bis zu 2.4 GHz im Overclocking, während der Thoroughbred-A meistens nur bis 2 Ghz zu pushen war. Der Palomino hingegen hatte teilweise schon mit 1.8 Ghz Probleme - AMD hat also durch einen Die-Shrink und einige Optimierungen noch eine ganze Menge an Performance aus dem Athlon XP herausgeholt.
Der Athlon XP und natürlich auch die vorgehenden Athlon-Modelle basieren auf dem EV6-Bus, der eigentlich ein Alpha-Prozessorbus ist. AMD hat diesen zur Einführung der K7-Serie für den Athlon verwendet - mit Erfolg, denn er bietet genügend Reserven um den Prozessor mit Daten zu versorgen. Der EV6-Bus verwendet dabei ein Double Data Rate-Verfahren - effektiv werden also wie bei DDR-SDRAM zwei Datenwörter pro Takt übertragen. Anfangs taktete man den EV6-Bus mit 100 Mhz, später mit 133 Mhz, jetzt sogar mit 166 Mhz. Somit spricht man auch von einem 266 Mhz CPU-Bustakt oder einem 333 Mhz Bustakt, da auf jedem Taktsignal zwei Datenwörter übertragen werden. Alle Athlon XP-Prozessoren, die aktuell auf dem Markt zu finden sind, besitzen einen Takt von 266 Mhz FSB, im Dezember bzw. im nächsten Jahr werden auch die ersten Modelle der Athlon XP-Prozessoren mit einem Quantispeed-Rating von 2700+ und mehr erhältlich sein, die dann auch den neuen 333 Mhz FSB verwenden.


Performance

Wie schon im vorigen Kapitel erwähnt kommen alle AMDs nicht an die Performance von Intel heran, auch nicht wenn man die Quantispeed-Rating oder die Pro-Mhz-Rating berücksichtigt. In den Benchmarks schneidet Intel einfach immer besser ab.
So kann zwar das aktuelle Modell von AMD der Athlon XP 2800+ dem von der technischen Ausrüstung vergleichbaren Pentium 4 2.8 Ghz gut Parole bieten und beide CPUs liegen etwa auf einer Stufe, doch behält Intel durch den zur selben Zeit gebautn 3.066 Ghz Prozessors die Performancekrone locker an.


Preis/Leistung und Fazit

In den Preis/Leistungsverhältnissen sieht es mit den Athlons immer noch besser aus. Auch wenn die CPUs nicht mit Intel mithalten können, der Intel gegenüber einen gleichwertigen Athlon ist immer etwas teurer.
Da Intel einfach momentan die Nase vorn hat und AMD wohl auf Grund der Struktur des Thoroughbred-Kernes auch nicht in der Lage ist, dies aufzuholen, heißt es jetzt einfach warten. Der Barton-Kern, der auch bald aus dem Hause AMD erwartet wird, stellt keine Erneuerung da, vielmehr will man mit dem größeren L2-Cache und der daraus resultierenden höheren Performance einfach nicht den Anschluss zu Intel verlieren. Dann setzt AMD alle Hoffnungen auf den Hammer, auf den ich jetzt noch zu sprechen kommen möchte.


X86-64 Architektur9

Während Intel mit der EPIC-Architektur ein neues Computer-Modell bei seinen 64-Bit-Prozessoren der Itanium-Maschine einsetzt, versucht Konkurrent AMD einen weichen Übergang in die 64-Bit-Welt. Ähnlich wie die Transition von 286er (16 Bit) auf 386er (32 Bit) sollen die »Hammer-CPUs« als vollwertige 32-Bit-CPUs agieren und zugleich AMDs schnellste Prozessoren dieser Klasse werden. Parallel dazu offeriert die x86-64-Architektur erweiterte 64-Bit-Kommandos und einen vollständig 64-bittigen Registersatz. Das soll vor allem einen reibungslosen Mischbetrieb von 64- und 32-Bit-Applikationen ermöglichen, welchen der Konkurrenzprozessor Itanium nur mäßig beherrscht.

AMDs Hammer-CPUs führen ein hochintegriertes Design ein. Die Prozessoren beinhalten einen DDR-Memory-Controller sowie einen mehrkanaligen I/O-Crossbar. Der Memory-Controller beherrscht bis zu 8 DIMMs, registered oder nicht, und erlaubt Fault-Tolerant-Technologien wie Chipkill. Über das I/O-System namens »Hyper Transport« kommunizieren die CPUs untereinander und mit den I/O-Komponenten. Die verschiedenen Hammer-Typen integrieren eine unterschiedliche Zahl dieser Hyper-Transport-Kanäle. Der I/O-Transport arbeitet als serielles Interface bei CPU-Core-Geschwindigkeit und bietet dabei 2-, 4-, 8-, 16- oder 32-Bit bidirektionale Kommunikation. Die sogenannte »Northbridge« des Chipsets entfällt Das integrierte Design verspricht geringe Latenzen bei I/O- und Speicherzugriffen. Da in einem MP-System die Prozessoren keinen Bus sharen müssen, sondern sich direkt miteinander unterhalten, verzichtet AMD auf den Level-3-Cache. L1- und L2-Caches integriert AMD on Die. Dank der vielen integrierten Komponenten benötigen die Hammer-CPUs zwar CPU-Sockel von noch nie da gewesenem Ausmaß (über 900 Pins beim Sledge-Hammer) können im Gegenzug aber mit recht simplen Motherboards auskommen. Laut AMD genügen dem CPU-Monster günstige 4-Layer-Boards. Alle Caches und Interconnects arbeiten ECC-geschützt.

Die Hammer-Ära leitet der »Claw-Hammer« ein. Die CPU erscheint zunächst als Single-Prozessor-Implementation für Workstations. Im Anschluss folgt eine Dual-CPU-fähige Variante des Claw-Hammer für Highend-Workstations und Server. Schließlich soll der lang erwartete »Sledge-Hammer« kommen. Diese Server-CPU skaliert bis acht Wege ohne zusätzliche Crossbar-Komponenten. Prinzipiell unterscheiden sich die verschiedenen Hammer-Varianten nur durch die Zahl der integrierten Hyper-Transport-Ports. Während Claw-Hammer mit einem oder zwei Hypertransports arbeitet, offeriert Sledge-Hammer vier dieser Kanäle.

Durch die integrierten Memory-Controller arbeiten Hammer-basierte Multiprozessorserver als NUMA-Verband. Dank der geringen Latenzzeiten solle es aber kaum Unterschiede zwischen Near- und Far-Memory-Zugriffen geben. Dank der flexiblen Hyper-Transport-Technologie kann ein MP-System mehrere I/O-Controller, wie PCI-X-Busse, über mehrere CPUs ansprechen.

AMDs Hammer-Architektur wirkt sehr durchdacht, äußerst flexibel und skalierbar, doch dennoch günstig. Ob und wie weit sich die Hammer-Familie einen Stück vom Itanium-Kuchen abschneiden kann, hängt nun davon ab, wie viele Hard- und Softwarepartner die Architektur unterstützen. Auf die klingenden Namen der PC- und PC-Server-Branche wird AMD leider verzichten müssen, da Unternehmen wie Dell oder HP sehr eng mit Intel zusammenarbeiten. Immerhin zeigen schon mal Firmen wie Fujitsu-Siemens gesteigertes Interesse am Hammer. Die Demons-tration des Claw-Hammer-Systems auf der CeBIT beschränkte sich auf 32-Bit-Windows-XP und 64-Bit-Suse-Linux. Um Erfolg im kommerziellen Server-Markt zu bekommen, muss AMD aber erst einmal Microsoft zu einem 64-Bit-Windows für Hammer überreden. Anders als Intel fährt AMD künftig nicht parallele Produktlinien. Wenn die Hammer-CPUs erst einmal auf dem Markt sind, lässt AMD die Athlon-Familie auslaufen. Die Kundenakzeptanz muss dann zeigen, ob der Hammer sein Dasein als überwiegend 32-bittig genutzte Workstation-CPU fristet, oder ob er den Sprung in 64-Bit-Enterprise-Server schafft.

 
 

Datenschutz
Top Themen / Analyse
indicator Welche Hardware
indicator Testen digitaler IC's
indicator Verbindungslose Datenübermittlung
indicator Problemteil
indicator Daten und Datenstrukturen
indicator AKTIVITÄTSDIAGRAMM
indicator TCP - Transmission Control Protocol -
indicator Windows - Start beschleunigen:
indicator Das Single Master Domain Model
indicator Kontrollfragen


Datenschutz
Zum selben thema
icon Netzwerk
icon Software
icon Entwicklung
icon Windows
icon Programm
icon Unix
icon Games
icon Sicherheit
icon Disk
icon Technologie
icon Bildung
icon Mp3
icon Cd
icon Suche
icon Grafik
icon Zahlung
icon Html
icon Internet
icon Hardware
icon Cpu
icon Firewall
icon Speicher
icon Mail
icon Banking
icon Video
icon Hacker
icon Design
icon Sprache
icon Dvd
icon Drucker
icon Elektronisches
icon Geschichte
icon Fehler
icon Website
icon Linux
icon Computer
A-Z informatik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution