Eine Vielfalt von Reaktortypen, die durch die Art des verwendeten Brennstoffs, Moderators und Kühlmittels charakterisiert werden können, hat man im Lauf der Entwicklung dieser Technik weltweit für die Erzeugung von elektrischem Strom gebaut. In Deutschland sind Siedewasser-, Druckwasser- und Hochtemperaturreaktoren in Betrieb. Man unterscheidet ferner nach dem Zweck Leistungsreaktoren zur Energieerzeugung, Produktionsreaktoren zur Gewinnung von waffenfähigem Plutonium oder Uran sowie Forschungsreaktoren.
Meist wird als Kernbrennstoff Uranoxid verwendet, das auf etwa drei Prozent Uran 235 angereichert ist. Als Moderator und Kühlmittel zugleich kann dann Wasser (mit gewöhnlichem Wasserstoff) eingesetzt werden. Reaktoren dieses Typs werden als Leichtwasserreaktoren bezeichnet.
Reaktoren, die nicht angereichertes Natururan "verbrennen", können kein gewöhnliches Wasser als Moderator verwenden. In diesem Fall würden zu viele Neutronen durch das normale Wasser absorbiert werden und so die Kettenreaktion abbrechen. In diesen Reaktortypen wird mit reinem Graphit oder so genanntem Schwerem Wasser (Deuteriumoxid) moderiert. Aufgrund dessen bezeichnet man sie auch als Schwerwasserreaktoren.
Im so genannten Druckwasserreaktor steht das Kühlwasser unter einem Überdruck von etwa 150 Atmosphären. Das Kühlwasser wird durch den Reaktorkern gepumpt und dort auf 325°C erhitzt. Das auf diese Weise überhitzte Wasser (es kann aufgrund des Überdruckes nicht sieden) wird anschließend durch einen Dampfgenerator gepumpt, wo mit Hilfe von Wärmetauschern in einem Sekundärkreis Wasser erhitzt und in Dampf umgewandelt wird. Dieser Dampf treibt über Turbinen Generatoren an und kondensiert zu Wasser, das zurück zum Dampfgenerator gepumpt wird. Der Sekundärkreis ist vom Kühlwasser des Reaktors getrennt und daher nicht radioaktiv. Ein dritter Wasserstrom, gespeist von einem Fluss oder einem Kühlturm, dient der Dampfkondensation.
Im Siedewasserreaktor wird das Kühlwasser unter etwas geringerem Druck gehalten, so dass es im Reaktorkern siedet. Der im Reaktordruckbehälter entstehende Dampf wird direkt zur Turbine des Generators geleitet, kondensiert dann und wird zum Reaktor zurückgepumpt. Der Dampf ist dabei zwar radioaktiv, aber es gibt keinen Wärmetauscher zwischen Reaktor und Turbine, der den Wirkungsgrad verringert. Wie beim Druckwasserreaktor ist das Kühlwasser des Kondensators von diesem Kreislauf getrennt.
Beim Hochtemperaturreaktor dient Graphit als Moderator und Helium als Kühlmittel.
Die Betriebsleistung eines Reaktors wird von Messgeräten für Temperatur, Strömung und nukleare Vorgänge überwacht. Die Leistung wird durch das Einbringen oder Entfernen von neutronenabsorbierenden Steuerstäben im Reaktorkern gesteuert. Die Lage dieser Stäbe bestimmt das Leistungsniveau, bei dem die Kettenreaktion von selbst abläuft.
Während des Betriebs und nach seiner Stilllegung enthält ein Reaktor mit einer Leistung von 1 Gigawatt Radioaktivität in großen Mengen. Die Radioaktivität, die der Reaktor während seines Betriebs abstrahlt, und die Spaltprodukte, die nach seiner Stilllegung zurückbleiben, werden von Betonwänden und meist einer zusätzlichen Hülle aus Stahlbeton um den Reaktor und um das Primärkühlsystem absorbiert. Eine weitere Sicherheitseinrichtung ist das Notkühlsystem, das bei einem Ausfall des Hauptkühlsystems ein Überhitzen des Reaktorkernes verhindern soll.
Obwohl sich Anfang der achtziger Jahre in den Vereinigten Staaten über 100 Kernkraftwerke in Betrieb oder in Bau befanden, blockierten nach dem Unfall von Three Mile Island Sicherheitsbedenken und wirtschaftliche Faktoren jeden weiteren Ausbau der Kernenergie in den USA. Seit 1978 wurden keine Kernkraftwerke mehr in Auftrag gegeben, und einige fertiggestellte Anlagen erhielten keine Betriebserlaubnis. 1990 wurden etwa 20 Prozent des elektrischen Stromes in den Vereinigten Staaten von Kernkraftwerken erzeugt, in Frankreich stammten fast drei Viertel des Stromes aus Kernkraftwerken. Das kanadische System der Deuterium-Uran-Reaktoren (CANDU) funktioniert mit seinen 20 Reaktoren zufriedenstellend.
In Großbritannien und Frankreich wurden die ersten großen Kraftwerksreaktoren mit Stangen aus natürlichem Uranmetall als Brennstoff betrieben, wobei als Moderator Graphit und als Kühlmittel unter Druck stehendes Kohlendioxid verwendet wurde. Diese ursprüngliche Bauweise wurde in Großbritannien durch ein System ersetzt, das angereichertes Uran als Brennstoff verwendet, und ein verbesserter gasgekühlter Reaktortyp wurde eingeführt. Der Anteil der Kernenergie an der Stromerzeugung beträgt dort derzeit fast ein Viertel. In Frankreich wurde der ursprüngliche Reaktortyp durch den Druckwasserreaktor amerikanischer Bauart ersetzt, als angereichertes Uran zur Verfügung stand.
Russland und die anderen Nachfolgestaaten der UdSSR haben ein großes Kernenergieprogramm aufgelegt, das auf graphitmoderierten und Druckwassersystemen beruht. Weltweit befanden sich Anfang der neunziger Jahre 120 Kernkraftwerke in Bau.
Antriebsreaktoren werden u. a. auch als Antrieb für große Schiffe, z. B. für Flugzeugträger, verwendet. Diese Aggregate sind meistens ähnlich konstruiert wie der Druckwasserreaktor.
Forschungsreaktoren sind kleinere Kernreaktoren, die für Ausbildungs- und Forschungszwecke verwendet werden oder radioaktive Isotope produzieren. Diese Reaktoren arbeiten in der Regel im Leistungsbereich von 1 Megawatt und können leichter angefahren und abgeschaltet werden als größere Reaktoren.
Für das Brüterverfahren, für das der größte Entwicklungsaufwand betrieben wurde, wird der mit flüssigem Natrium als Kühlmittel arbeitende so genannte "schnelle Brüter" verwendet. Diese schnellen Brüter, die mit flüssigem Natrium arbeiten, produzieren etwa 20 Prozent mehr Brennstoff, als sie verbrauchen. In einem großen Kernreaktor wird innerhalb von 20 Jahren genügend überschüssiger Brennstoff für das Beschicken eines anderen Reaktors gleicher Leistung produziert. In diesem Reaktortyp werden etwa 75 Prozent des Energiegehalts von natürlichem Uran genutzt.
|