Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


physik artikel (Interpretation und charakterisierung)

Blitz

Welle

Laser

Kommunikation durch laserstrahlung (telefonleitungen, telekabel, photonik, glasfasern)


1. Atom
2. Motor

Allgemein: In der modernen Nachrichtentechnik werden Sprache, Bilder und andere Daten in elektrische Signale umgewandelt, und lassen sich daher viel schneller übermitteln als auf \"herkömmlichem\" Weg. Zur Übertragung über große Entfernungen werden die elektrisch kodierten Nachrichten auf elektromagnetische Wellen moduliert, welche sich mit Lichtgeschwindigkeit ausbreiten (Lichtgeschwindigkeit: ~300.000 km/s). Auf dieser Technik beruht die Radio- und Fernsehtechnik, in der Wellen von 105 bis 109 Hz (Kilo-, Mega- und Gigahertzbereich) als Informationsträger benutzt werden.

Die optische Übertragung von Nachrichten ist keinesfalls eine Neuheit, man denke nur an die Indianer, die ihre Nachrichten mittels Rauchsignalen weiterleiteten. Im auslaufenden 18. Jahrhundert wurde dieses doch recht einfache System in Frankreich abgewandelt: Ein optischer Telegraph mit speziellen Zeichen auf Signalmasten übermittelte eine Nachricht über 200 km in 15 Minuten. Bis vor wenigen Jahren war auch noch das Morsen mit Lichtsignalen oder das Buchstabieren mit dem Flaggenalphabet gebräuchlich (vor allem Militär).

Diese zuverlässigen, aber doch recht langsamen Verfahren wurden im 19. Jahrhundert durch Telegraphie (z.B. Werner von Siemens, 1848), Telefon und noch später durch die drahtlose Nachrichtenübertragung mit Radiowellen ersetzt. Heute ist von diesen Verfahren vor allem das Telefon weltweit verbreitet. Dabei werden die in elektrische Impulse verwandelten Sprachsignale über Kupferdrahtleitungen, Koaxialkabel, Richtfunkstrecken und Nachrichtensatelliten geführt. Die Nachrichten- und Datenflüsse wachsen beständig weiter an.

Wegen der immer größer werdenden Datenmengen werden die optischen Übertragungssysteme, wegen ihrer hohen Übertragungsrate, wieder aktuell. Die Elektronik wird dabei zunehmend durch die \"Photonik\" ersetzt. Das Grundprinzip dieser Technik ist immer dasselbe: Die zur Übertragung notwendige Strahlung (Beim \"normalen\" Kupferleitungstelefon entspräche dies den Elektroimpulsen) wird durch lichtemittierende Dioden (LEDs) oder durch Halbleiterlaser erzeugt, und wird dann durch Glasfasern zum Empfänger geschickt. Die am häufigsten verwendeten Frequenzen der Trägerwelle betragen einige hundert Terahertz (1 THz = 1012 Hz), denn diese Wellen können besonders große Datenmengen übertragen.

Im Moment sind neue Technologien in der Entwicklung, die in Zukunft Telefon, Computer, Fernsehen und andere Medien verknüpfen werden. Ein Schritt dahin sind ISDN-Leitungen und Internetanschlüsse über die normale Elektrosteckdose.



Laser in der Kommunikation:

Ein großes Problem bei der Laserkommunikationstechnologie ist, daß die Laserstrahlen, die zu Satelliten gelangen soll im Gegensatz zu elektromagnetischen Wellen nicht wetterunabhängig sind. Daher wird die Laserstrahlung meist für solche Anwendungen nicht verwendet (statt dessen elektromagnetische Wellen), da schon mittelstarker Nebel die Sichtweite des Lasers auf einige wenige Meter reduziert. Daher werden auch die \"ebenerdig\" verwendeten Laserstrahlen meist durch dünne Glasfasern geleitet. Anders verhält es sich im freien, athmosphärenlosen Weltraum: Hier gibt es nichts Bekanntes (im den Menschen bekannten Raum), daß gebündelte Laserstrahlung aufhalten könnte.

Die Telefonnetze innerhalb Europas werden momentan mit Glasfaser- und Lasertechnologien nachgerüstet (In Österreich bereits 18.000 km Lichtleitfasern, In Deutschland 80.000 km).





Beim Telefon wird die Druckwelle des Schalls im Mikrophon der Sprechmuschel in elektrische Signale umgewandelt; Es entsteht eine Wechselspannung, welche Tonhöhe und Lautstärke der Sprache exakt widerspiegelt. Zur Übertragung werden diese sogenannten analogen Signale oft digital kodiert. Die Digitaltechnik zeichnet sich nämlich durch eine wesentlich geringere Anfälligkeit gegenüber Störungen aus.

Die Umsetzung des elektronischen Signals in ein optisches erfolgt mit Hilfe eines Halbleiterlasers. Dieser ähnelt zwar den um einiges billigeren Leuchtdioden, zeichnet sich aber durch gerichtete Abstrahlung, höhere Leuchtdichte und bessere spektrale Reinheit aus. Bei digitaler Kodierung wird der Laser ein- und ausgeschaltet, je nachdem ob eine logische Eins oder Null übertragen wird. Bei der Übersendung analoger Nachrichten wird die Lichtleistung des Lasers kontinuierlich gesteuert.

Die Laserstrahlung wird dann in eine optische Faser eingekoppelt, die sich direkt vor dem Laser befindet. Die Abmessungen sind winzig, der Querschnitt der Emissionsfläche beträgt nur etwa 0,1 µm * 1 µm. Da der Laserstrahl den Faserkern möglichst genau treffen sollte, werden höchste Anforderungen an mechanischer Genauigkeit beim Aufbau gestellt. In der Faser selbst breitet sich die Strahlung annähernd verlustlos aus. Da in der Glasfaser der Effekt der Totalreflexion eintritt, wird das Licht vom Rand ständig in den Kern reflektiert, da im Zentrum die Brechzahl größer als am Rand ist. Bei speziellen Fasern tritt erst nach 100 km (!) ein wesentlicher Strahlungsverlust auf. Am Ende der Übertragungsstrecke wird die Strahlung durch eine Photodiode in eine elektrische Spannung zurück gewandelt. Dann kann das Signal auf konventionelle Art dekodiert und weiter elektronisch verarbeitet werden, indem es beispielsweise in der Ohrmuschel des Hörers in Sprache umgesetzt wird. Teilweise werden Photodioden auch als Teile von Relaisstationen verwendet, wo das Signal durch einen anderen Halbleiterlaser weiter geschickt wird. Auf diese Weise können die Signale viele tausend Kilometer ohne großartigen Qualitätsverlust gesendet werden.

Digitale Kodierung:

Zur Digitalisierung von Signalen wird eine analoge Spannung in regelmäßigen Abständen abgetastet und gemessen. Der entsprechende Spannungswert wird über einen sogenannten Analog-Digital-Wandler in eine Digitalzahl umgesetzt. Beim normalen Telefon reichen 8 bits aus, so daß 256 (= 28) verschiedene Signalwerte dargestellt werden können. Liegt die Signalspannung z.B. zwischen 0 und 10 V so wird diese durch die Digitalisierung mit 8 bit in Schritten von 40 mV gemessen.

Beim Telefonieren wird die Sprache in einem Frequenzbereich bis maximal 4 kHz übertragen. Nach einem allgemeinen Theorem der Nachrichtentechnik muß die Abtastung mit mindestens der doppelten Frequenz erfolgen. Es wird also mit 8 kHz eine Folge von 8 bit gesendet, d.h. 64000 bit/s. Beim Fernsehen beträgt die Bandbreite statt 4 kHz etwa 4 MHz, folglich liegt die Übertragungsrate um den Faktor 1000 höher als beim Telefonieren. Eine Glasfaser ist in der Lage mehrere Fernsehkanäle und dementsprechend einige 1000 Telefongespräche gleichzeitig zu senden.

Die Faserkabel, die bei der Laserleitung verwendet werden, werden meist von einem Kunststoffmantel umgeben, der Streustrahlung aufhält und zur längeren Haltbarkeit des Glasfaserkabels beiträgt. Die einzelne Glasfaser hat einen Durchmesser von nur wenigen Mikrometern. Daher werden meist 12 Glasfasern zu einem Faserband verbunden, und 12 Faserbänder ergeben ein Glasfaserkabel (mit 144 einzelnen Glasfasern). Dementsprechend hoch ist die Kapazität dieser Kabel: Ein Kabel ist im Stande mindestens 100.000 Telefongespräche gleichzeitig zu übertragen.



Bauelemente der Glasfasertechnik sind:

Glasfaser (meist Kabel mit 144 Fasern)

Halbleiterlaser
Empfangsdiode
zahlreiche elektronische und spezielle optische Systeme, wie Strahlweichen, Modulatoren oder optische Schalter.
Die verwendeten Halbleiterlaser sind meist Laser mit Halbleiterstrukturen auf Basis von GaAs oder InP mit Wellenlängen um 0,9 bzw. 1,3 und 1,5 µm und Laserleistungen von etwa 1 mW. Die spektrale Bandbreite liegt um 1 nm (Sie sollte möglichst klein sein, da die Laufzeit in der Faser von der Wellenlänge abhängt). Meistens verwendet man Laser deren aktive Zone möglichst schmal und der Geometrie der Faser angepaßt ist (Buried-heterostructure-Laser). Das Schalten der Laser erfolgt direkt über den Anregungsstrom.

Die Empfangsdiode (= Photodiode) besteht aus Si oder aus einem ähnlichen Halbleitermaterial wie bei den Lasern.



Vorteile der optischen Nachrichten- und Übertragungstechnik:

Die Menge der übertragbaren Daten hängt von der Frequenz der Trägerwelle ab. Deshalb ist Licht mit einer Frequenz der optischen Datensignale von etwa 200 THz besonders gut dafür geeignet. Die gesamte optische Bandbreite, die für die Signalübertragung bei Verwendung von Lasern mit 1,3 und 1,5 µm zur Verfügung steht, beträgt etwa 25 THz. Das ist bedeutend mehr als bei elektronischen Breitbandsystemen mit 10 GHz Trägerfrequenz, die z.B. durch Koaxialkabel realisiert werden. Mit Licht als Trägerschwingung erhöht sich damit die übertragbare Datenmenge um mehr als den Faktor 1000.

Optische Fasern sind bezüglich Übersprechen von Nachbarfasern unempfindlich, abhörsicher und wesentlich kompakter als elektronische Kabel oder Lichtleiter bei hoher Frequenz. Auch die Übertragungsverluste sind geringer, und es werden weniger Relaisstationen benötigt.

Optische Kabel besitzen nur eine äußerst geringe Anfälligkeit bezüglich äußeren elektromagnetischen Störeigenschaften (Da elektronische Leitungen bei Atombombenentladungen durch den sogenannten elektromagnetischen Sturm, der Spannungsimpulse auf die Drähte legen könnte, zerstört werden können, investierte vor allem das Militär wegen obig genannter Eigenschaft am Anfang hohe Summen in diese Technologie).

heutzutage wird die optische Datenübertragung hauptsächlich in zivilen Bereichen verwendet:

Zur Übertragung von Telefongesprächen und Fernsehprogrammen (\"Kabel\")
Zum Verbinden von Großrechnern oder elektronischen Baugruppen mit hohen Datenraten
Im Umfeld von starken elektromagnetischen Störfeldern oder hohen elektrischen Spannungen.

 
 

Datenschutz
Top Themen / Analyse
indicator Auftreten verschiedener Strahlungen bei natürlicher und künstlicher Radioaktivität
indicator DER OTTO-4-TAKT-MOTOR
indicator Schäden durch Wirbelstürme:
indicator Der vollkommene Kleinbildfilm
indicator Warum dreht sich der Rotor einer Windkraftanlage?
indicator Wer ist in Gefahr, Diabetes Typ 2 zu entwickeln ???
indicator WASSERKRAFTWERKSARTEN
indicator Windkraft:
indicator BOHRsches Atommodell (1913)
indicator Lichtgeschwindigkeit


Datenschutz
Zum selben thema
icon Transistor
icon Energie
icon Schall
icon Einstein
icon Kernfusion
icon Bomben
icon Strahlung
icon Magnet
icon Kohäsion
icon Welle
icon Diamant
icon Newton
icon Blitz
icon Adhäsion
icon Biomasse
icon Gleitreibung
icon Dichte
icon Watt
icon Entwicklung
icon Otto
icon Laser
icon Reaktor
icon Widerstand
icon Kraft
icon Mikroskope
icon Dynamik
icon Turbine
icon Herstellung
icon Elektrizität
icon Gesetz
icon Strahlung
icon Theorie
icon Kapazität
icon Haftreibung
icon Transformator
icon Wirkung
icon Mechanik
A-Z physik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution